Displaying publications 561 - 580 of 10373 in total

Abstract:
Sort:
  1. Esmaeili C, Abdi MM, Mathew AP, Jonoobi M, Oksman K, Rezayi M
    Sensors (Basel), 2015;15(10):24681-97.
    PMID: 26404269 DOI: 10.3390/s151024681
    Integrating polypyrrole-cellulose nanocrystal-based composites with glucose oxidase (GOx) as a new sensing regime was investigated. Polypyrrole-cellulose nanocrystal (PPy-CNC)-based composite as a novel immobilization membrane with unique physicochemical properties was found to enhance biosensor performance. Field emission scanning electron microscopy (FESEM) images showed that fibers were nanosized and porous, which is appropriate for accommodating enzymes and increasing electron transfer kinetics. The voltammetric results showed that the native structure and biocatalytic activity of GOx immobilized on the PPy-CNC nanocomposite remained and exhibited a high sensitivity (ca. 0.73 μA·mM(-1)), with a high dynamic response ranging from 1.0 to 20 mM glucose. The modified glucose biosensor exhibits a limit of detection (LOD) of (50 ± 10) µM and also excludes interfering species, such as ascorbic acid, uric acid, and cholesterol, which makes this sensor suitable for glucose determination in real samples. This sensor displays an acceptable reproducibility and stability over time. The current response was maintained over 95% of the initial value after 17 days, and the current difference measurement obtained using different electrodes provided a relative standard deviation (RSD) of 4.47%.
    Matched MeSH terms: Cellulose/chemistry; Enzymes, Immobilized/chemistry; Glucose Oxidase/chemistry; Polymers/chemistry; Pyrroles/chemistry; Nanoparticles/chemistry; Nanocomposites/chemistry
  2. Rahmani O, Highfield J, Junin R, Tyrer M, Pour AB
    Molecules, 2016 Mar 16;21(3):353.
    PMID: 26999082 DOI: 10.3390/molecules21030353
    In this work, the potential of CO₂ mineral carbonation of brucite (Mg(OH)2) derived from the Mount Tawai peridotite (forsterite based (Mg)₂SiO4) to produce thermodynamically stable magnesium carbonate (MgCO3) was evaluated. The effect of three main factors (reaction temperature, particle size, and water vapor) were investigated in a sequence of experiments consisting of aqueous acid leaching, evaporation to dryness of the slurry mass, and then gas-solid carbonation under pressurized CO2. The maximum amount of Mg converted to MgCO₃ is ~99%, which occurred at temperatures between 150 and 175 °C. It was also found that the reduction of particle size range from >200 to <75 µm enhanced the leaching rate significantly. In addition, the results showed the essential role of water vapor in promoting effective carbonation. By increasing water vapor concentration from 5 to 10 vol %, the mineral carbonation rate increased by 30%. This work has also numerically modeled the process by which CO₂ gas may be sequestered, by reaction with forsterite in the presence of moisture. In both experimental analysis and geochemical modeling, the results showed that the reaction is favored and of high yield; going almost to completion (within about one year) with the bulk of the carbon partitioning into magnesite and that very little remains in solution.
    Matched MeSH terms: Carbon Dioxide/chemistry*; Carbonates/chemistry*; Magnesium Hydroxide/chemistry; Minerals/chemistry*; Magnesium Compounds/chemistry; Silicates/chemistry; Iron Compounds/chemistry
  3. Kandandapani S, Tan CY, Shuib AS, Tayyab S
    Protein Pept Lett, 2016;23(6):537-43.
    PMID: 26936029
    The influence of buffer composition on the conformational stability of native and calciumdepleted Bacillus licheniformis α-amylase (BLA) was investigated against guanidine hydrochloride (GdnHCl) denaturation using circular dichroism, fluorescence and UV-difference spectroscopy. Differential effect of buffer composition on GdnHCl denaturation of BLA was evident from the magnitude of these spectral signals, which followed the order: sodium phosphate > Tris-HCl > HEPES > MOPS. These effects became more pronounced with calcium-depleted BLA. Sephacryl S-200 gel chromatographic results showed significant BLA aggregation in the presence of 6 M GdnHCl.
    Matched MeSH terms: alpha-Amylases/chemistry*; Calcium Chloride/chemistry*; HEPES/chemistry*; Morpholines/chemistry*; Phosphates/chemistry*; Phosphines/chemistry*; Guanidine/chemistry*
  4. Neves RF, Jones DB, Lopes MC, Blanco F, García G, Ratnavelu K, et al.
    J Chem Phys, 2015 May 21;142(19):194305.
    PMID: 26001459 DOI: 10.1063/1.4921313
    We report on measurements of integral cross sections (ICSs) for electron impact excitation of a series of composite vibrational modes and electronic-states in phenol, where the energy range of those experiments was 15-250 eV. There are currently no other results against which we can directly compare those measured data. We also report results from our independent atom model with screened additivity rule correction computations, namely, for the inelastic ICS (all discrete electronic states and neutral dissociation) and the total ionisation ICS. In addition, for the relevant dipole-allowed excited electronic states, we also report f-scaled Born-level and energy-corrected and f-scaled Born-level (BEf-scaled) ICS. Where possible, our measured and calculated ICSs are compared against one another with the general level of accord between them being satisfactory to within the measurement uncertainties.
    Matched MeSH terms: Phenols/chemistry*
  5. Khan NI, Ijaz K, Zahid M, Khan AS, Abdul Kadir MR, Hussain R, et al.
    Mater Sci Eng C Mater Biol Appl, 2015 Nov 1;56:286-93.
    PMID: 26249592 DOI: 10.1016/j.msec.2015.05.025
    Hydroxyapatite is used extensively in hard tissue repair due to its biocompatibility and similarity to biological apatite, the mineral component of bone. It differs subtly in composition from biological apatite which contains other ions such as magnesium, zinc, carbonate and silicon (believed to play biological roles). Traditional methods of hydroxyapatite synthesis are time consuming and require strict reaction parameter control. This paper outlines synthesis of magnesium substituted hydroxyapatite using simple microwave irradiation of precipitated suspensions. Microwave irradiation resulted in a drastic decrease in ageing times of amorphous apatitic phases. Time taken to synthesize hydroxyapatite (which remained stable upon heat treatment at 900°C for 1h) reduced twelve folds (to 2h) as compared to traditionally required times. The effects of increasing magnesium concentration in the precursors on particle size, surface area, phase-purity, agglomeration and thermal stability, were observed using scanning electron microscopy, BET surface area analysis, X-ray diffraction and photo acoustic Fourier transform infra-red spectroscopy. Porous agglomerates were obtained after a brief heat-treatment (1h) at 900°C.
    Matched MeSH terms: Magnesium/chemistry*
  6. Tawfiq MF, Aroua MK, Sulaiman NM
    J Environ Sci (China), 2015 Jul 1;33:239-44.
    PMID: 26141898 DOI: 10.1016/j.jes.2015.01.015
    Atmospheric pollution and global warming issues are increasingly becoming major environmental concerns. Fire is one of the significant sources of pollutant gases released into the atmosphere; and tropical biomass fires, which are of particular interest in this study, contribute greatly to the global budget of CO and CO2. This pioneer research simulates the natural biomass burning strategy in Malaysia using an experimental burning facility. The investigation was conducted on the emissions (CO2, CO, and Benzene, Toluene, Ethylbenzene, Xylenes (BTEX)) from ten tropical biomass species. The selected species represent the major tropical forests that are frequently subjected to dry forest fire incidents. An experimental burning facility equipped with an on-line gas analyzer was employed to determine the burning emissions. The major emission factors were found to vary among the species, and the specific results were as follows. The moisture content of a particular biomass greatly influenced its emission pattern. The smoke analysis results revealed the existence of BTEX, which were sampled from a combustion chamber by enrichment traps aided with a universal gas sampler. The BTEX were determined by organic solvent extraction followed by GC/MS quantification, the results of which suggested that the biomass burning emission factor contributed significant amounts of benzene, toluene, and m,p-xylene. The modified combustion efficiency (MCE) changed in response to changes in the sample moisture content. Therefore, this study concluded that the emission of some pollutants mainly depends on the burning phase and sample moisture content of the biomass.
    Matched MeSH terms: Air Pollutants/chemistry; Benzene/chemistry*; Carbon Dioxide/chemistry*; Carbon Monoxide/chemistry*; Ethylenes/chemistry; Toluene/chemistry*; Xylenes/chemistry*
  7. Rahmah S, Ahmad Mubbarakh S, Soo Ping K, Subramaniam S
    ScientificWorldJournal, 2015;2015:961793.
    PMID: 25861687 DOI: 10.1155/2015/961793
    Protocorm-like bodies (PLBs) of Brassidium Shooting Star orchid were successfully cryopreserved using droplet-vitrification method. Vitrification based cryopreservation protocol is comprised of preculture, osmoprotection, cryoprotection, cooling, rewarming, and growth recovery and each and every step contributes to the achievement of successful cryopreservation. In order to reveal the lethal and nonlethal damage produced by cryopreservation, histological observation, scanning electron microscopy (SEM), and biochemical analysis were carried out in both cryopreserved and noncryopreserved PLBs of Brassidium Shooting Star orchid comparing with the control PLBs stock culture. Histological and scanning electron microscopy analyses displayed structural changes in cryopreserved PLBs due to the impact of cryoinjury during exposure to liquid nitrogen. Total soluble protein significantly increased throughout the dehydration process and the highest value was achieved when PLBs were stored in liquid nitrogen. Ascorbate peroxidase (APX) and catalase (CAT) showed the highest enzyme activities in both dehydration and cryostorage treatments indicating that stress level of PLBs was high during these stages.
    Matched MeSH terms: Viridiplantae/chemistry*
  8. Padzil FN, Zakaria S, Chia CH, Jaafar SN, Kaco H, Gan S, et al.
    Carbohydr Polym, 2015 Jun 25;124:164-71.
    PMID: 25839807 DOI: 10.1016/j.carbpol.2015.02.013
    Bleached kenaf core pulps (BKC) were hydrolyzed in H2SO4 (0.5M) at different time (0min to 90min) at room temperature. After the hydrolysis process, the viscosity average molecular weight (Mŋ) for BKC sample has reduced from 14.5×10(4) to 2.55×10(4). The hydrolyzed BKC was then dissolved in NaOH:urea:water and in LiOH:urea:water mixed solvent at the ratio of 7:12:81 and 4.6:15:80.4, respectively. The increased in hydrolysis time has decreased Mŋ of cellulose leading to easy dissolution process. Higher porosity and transparency with lower crystallinity index (CrI) of regenerated membrane produced can be achieved as the Mŋ reduced. The properties of membrane were observed through FESEM, UV-vis spectrophotometer and XRD. This study has proven that acid hydrolysis has reduced the Mŋ of cellulose, thus, enhanced the properties of regenerated membrane produced with assisted by alkaline/urea system.
    Matched MeSH terms: Cellulose/chemistry*; Sodium Hydroxide/chemistry*; Sulfuric Acids/chemistry*; Urea/chemistry*; Water/chemistry; Lithium Compounds/chemistry; Hibiscus/chemistry*
  9. Kuppusamy P, Ichwan SJ, Parine NR, Yusoff MM, Maniam GP, Govindan N
    J Environ Sci (China), 2015 Mar 1;29:151-7.
    PMID: 25766024 DOI: 10.1016/j.jes.2014.06.050
    In this present study, we reported broccoli (Brassica oleracea L.) as a potential candidate for the synthesis of gold and silver nanoparticles (NPs) in green chemistry method. The synthesized metal nanoparticles are evaluated their antimicrobial efficacy against different human pathogenic organisms. The physico-chemical properties of gold nanoparticles were analyzed using different analytical techniques such as a UV-Vis spectrophotometer, Field Emission Scanning Electron Microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction and a Fourier Transform Infrared spectrophotometer. In addition, gold and silver NP antimicrobial efficacy was checked by disc diffusion assay. UV-Vis color intensity of the nanoparticles was shown at 540 and 450 nm for gold and silver nanoparticles respectively. Higher magnification of the Field Emission Scanning Electron Microscopy image shows the variable morphology of the gold nanoparticles such as spherical, rod and triangular shapes and silver nanoparticles were seen in spherical shapes. The average spherical size of the particles was observed in 24-38 nm for gold and 30-45 nm for silver NPs. X-ray diffraction pattern confirmed the presence of gold nanoparticles and silver nanoparticles which were crystalline in nature. Additionally, the functional metabolites were identified by the Fourier Transform Infrared spectroscopy. IR spectra revealed phenols, alcohols, aldehydes (sugar moieties), vitamins and proteins are present in the broccoli extract which are accountable to synthesize the nanoparticles. The synthesized gold and silver NPs inhibited the growth of the tested bacterial and fungal pathogens at the concentration of 50 μg/mL respectively. In addition, broccoli mediated gold and silver nanoparticles have shown potent antimicrobial activity against human pathogens.
    Matched MeSH terms: Ethanol/chemistry*; Anti-Bacterial Agents/chemistry; Brassica/chemistry*; Gold/chemistry*; Plant Extracts/chemistry*; Silver/chemistry*; Metal Nanoparticles/chemistry*
  10. Ling SK, Komorita A, Tanaka T, Fujioka T, Mihashi K, Kouno I
    J Nat Prod, 2002 May;65(5):656-60.
    PMID: 12027736
    Six new sulfur-containing bis-iridoid glucosides, saprosmosides A-F (1-6), were isolated from the leaves of Saprosma scortechinii. From the stems of this same plant, two new iridoid glucosides, 3,4-dihydro-3-methoxypaederoside (8) and 10-O-benzoyldeacetylasperulosidic acid (12), were isolated. Their structures were elucidated by means of chemical, NMR, and mass spectroscopic methods. Additionally, 11 known iridoid glucosides were isolated and characterized as deacetylasperuloside, asperuloside, paederoside (7), deacetylasperulosidic acid (9), scandoside, asperulosidic acid, 10-acetylscandoside, paederosidic acid (10), 6-epi-paederosidic acid (11), methylpaederosidate, and monotropein. The structures of the new bis-iridoid glucosides were formed by intermolecular esterification between the glucose and carboxyl groups of three monomeric iridoid glucosides (7, 9, and 10).
    Matched MeSH terms: Glucosides/chemistry; Plants/chemistry*; Pyrans/chemistry; Sulfur/chemistry*; Plant Leaves/chemistry; Plant Stems/chemistry; Rubiaceae/chemistry*
  11. Ang HH
    Trends Pharmacol. Sci., 2004 Jun;25(6):297-8.
    PMID: 15165743
    Matched MeSH terms: Plants, Medicinal/chemistry
  12. Begum SZ, Nizam NSM, Muhamad A, Saiman MI, Crouse KA, Abdul Rahman MB
    PLoS One, 2020;15(11):e0238147.
    PMID: 33147237 DOI: 10.1371/journal.pone.0238147
    Laccases, oxidative copper-enzymes found in fungi and bacteria were used as the basis in the design of nona- and tetrapeptides. Laccases are known to be excellent catalysts for the degradation of phenolic xenobiotic waste. However, since solvent extraction of laccases is environmentally-unfriendly and yields obtained are low, they are less preferred compared to synthetic catalysts. The histidine rich peptides were designed based on the active site of laccase extracted from Trametes versicolor through RCSB Protein Data Bank, LOMETS and PyMol software. The peptides were synthesized using Fmoc-solid phase peptide synthesis (SPPS) with 30-40% yield. These peptides were purified and characterized using LC-MS (purities >75%), FTIR and NMR spectroscopy. Synthesized copper(II)-peptides were crystallized and then analyzed spectroscopically. Their structures were elucidated using 1D and 2D NMR. Standards (o,m,p-cresol, 2,4-dichlorophenol) catalysed using laccase from Trametes versicolor (0.66 U/mg) were screened under different temperatures and stirring rate conditions. After optimizing the degradation of the standards with the best reaction conditions reported herein, medications with phenolic and aromatic structures such as ibuprofen, paracetamol (acetaminophen), salbutamol, erythromycin and insulin were screened using laccase (positive control), apo-peptides and copper-peptides. Their activities evaluated using GC-MS, were compared with those of peptide and copper-peptide catalysts. The tetrapeptide was found to have the higher degradation activity towards salbutamol (96.8%) compared with laccase at 42.8%. Ibuprofen (35.1%), salbutamol (52.9%) and erythromycin (49.7%) were reported to have the highest degradation activities using Cu-tetrapeptide as catalyst when compared with the other medications. Consequently, o-cresol (84%) was oxidized by Tp-Cu while the apo-peptides failed to oxidize the cresols. Copper(II)-peptides were observed to have higher catalytic activity compared to their parent peptides and the enzyme laccase for xenobiotic degradation.
    Matched MeSH terms: Copper/chemistry*; Pharmaceutical Preparations/chemistry; Fungal Proteins/chemistry; Imidazoles/chemistry*; Peptides/chemistry*; Xenobiotics/chemistry*; Laccase/chemistry*
  13. Xu LL, Zhang HF, Li M, Ng SW, Feng JH, Mao JG, et al.
    J Am Chem Soc, 2018 09 19;140(37):11569-11572.
    PMID: 30141923 DOI: 10.1021/jacs.8b06725
    Chiroptical activity is observed from an achiral adenine-containing metal-organic framework (MOF) named ZnFDCA. Such a seemingly counterintuitive phenomenon can, in fact, be predicted by the intrinsic crystal symmetry of 4̅2 m point group. Although theoretically allowed, examples of optically active achiral crystals are extremely rare. ZnFDCA is the first reported achiral MOF showing optical activity, as demonstrated by a pair of circular dichroism signals with opposite signs and enhanced intensity. Moreover, simply through adding an amino substituent to adenine, the chiroptical activity, as well as nonlinear optical activity, of the analogous MOF, namely ZnFDCA-NH2, disappears due to diverse packing pattern giving rise to centrosymmetric crystal symmetry.
    Matched MeSH terms: Adenine/chemistry*
  14. Ahmad N, Zakaria MR, Mohd Yusoff MZ, Fujimoto S, Inoue H, Ariffin H, et al.
    Molecules, 2018 May 30;23(6).
    PMID: 29848973 DOI: 10.3390/molecules23061310
    The present work aimed to investigate the pretreatment of oil palm mesocarp fiber (OPMF) in subcritical H₂O-CO₂ at a temperature range from 150⁻200 °C and 20⁻180 min with CO₂ pressure from 3⁻5 MPa. The pretreated solids and liquids from this process were separated by filtration and characterized. Xylooligosaccharides (XOs), sugar monomers, acids, furans and phenols in the pretreated liquids were analyzed by using HPLC. XOs with a degree of polymerization X2⁻X4 comprising xylobiose, xylotriose, xylotetraose were analyzed by using HPAEC-PAD. Enzymatic hydrolysis was performed on cellulose-rich pretreated solids to observe xylose and glucose production. An optimal condition for XOs production was achieved at 180 °C, 60 min, 3 MPa and the highest XOs obtained was 81.60 mg/g which corresponded to 36.59% of XOs yield from total xylan of OPMF. The highest xylose and glucose yields obtained from pretreated solids were 29.96% and 84.65%, respectively at cellulase loading of 10 FPU/g-substrate.
    Matched MeSH terms: Carbon Dioxide/chemistry*; Glucose/chemistry*; Glucuronates/chemistry*; Oligosaccharides/chemistry*; Water/chemistry*; Arecaceae/chemistry*; Phytochemicals/chemistry
  15. Yavari S, Sapari NB, Malakahmad A, Yavari S
    J Hazard Mater, 2019 03 15;366:636-642.
    PMID: 30579230 DOI: 10.1016/j.jhazmat.2018.12.022
    Imidazolinones as a persistent and active herbicides group have potential risks to non-target organisms in the environment. Biochar is a carbon-rich sorbent used as an amendment to change soil properties and its microbial communities effective on pesticides degradation rate. The present study was the first to compare empty fruit bunch (EFB) of oil palm and rice husk (RH) biomasses as biochar feedstock for remediation of imidazolinones-contaminated soils. Degradations of imazapic, imazapyr, and a mixture of them (Onduty®) was investigated in the presence of the optimized biochars in the soil during a 70-days incubation. Based on the results, the polar herbicides were resistant to hydrolysis degradation. Photolysis rates of the herbicides reduced significantly in the presence of the biochars in the soil. EFB biochar had greater effects due to its chemical compositions and surface functional groups. Photo-degradation of imazapyr was more affected by biochars amendment. The imidazolinones bio-degradation, however, accelerated significantly with the presence of EFB and RH biochars in soil with the greater effects of RH biochar. It was concluded that the application of the optimized EFB and RH biochars as an innovative sustainable strategy has the potential to decrease the persistence of the imidazolinones and minimize their environmental hazards.
    Matched MeSH terms: Charcoal/chemistry*; Herbicides/chemistry*; Imidazoles/chemistry*; Niacin/chemistry; Nicotinic Acids/chemistry*; Oryza/chemistry*; Soil Pollutants/chemistry*
  16. Khor YP, Sim BI, Abas F, Lai OM, Wang Y, Nehdi IA, et al.
    J Sci Food Agric, 2019 Dec;99(15):6989-6997.
    PMID: 31414493 DOI: 10.1002/jsfa.9989
    BACKGROUND: Recycled oil has emerged as a significant food safety issue and poses a major threat to public health. To date, very limited studies have been conducted aiming to detect the adulteration of used and recycled palm olein in refined, bleached and deodorized palm olein (RBDPO). In the present study, oil samples that underwent controlled heating and deep-frying studies were refined using the common oil refining procedure to simulate the production of recycled oil. Polymerized triacylglycerol (PTG), oxidized monomeric triacylglycerols (oxTAGs), such as epoxy, keto and hydroxy acids, and caprylic acid have been proposed as potential indicators for tracking the adulteration of recycled oil.

    RESULTS: For PTG, triacylglycerol oligomers and dimers showed a significant increase (P 

    Matched MeSH terms: Triglycerides/chemistry*
  17. Mudgil P, Baby B, Ngoh YY, Vijayan R, Gan CY, Maqsood S
    J Dairy Sci, 2019 Dec;102(12):10748-10759.
    PMID: 31548068 DOI: 10.3168/jds.2019-16520
    Novel bioactive peptides from camel milk protein hydrolysates (CMPH) were identified and tested for inhibition of cholesterol esterase (CEase), and their possible binding mechanisms were elucidated by molecular docking. Papain-generated CMPH showed the highest degree of hydrolysis. All CMPH produced upon enzymatic degradation demonstrated a dramatic enhancement of CEase inhibition compared with intact camel milk proteins, with papain-generated hydrolysate P9 displaying the highest inhibition. Peptide identification and their modeling through PepSite 2 revealed that among 20 potential bioactive peptides in alcalase-generated hydrolysate A9, only 3 peptides, with sequences KFQWGY, SQDWSFY, and YWYPPQ, showed the highest binding toward CEase catalytic sites. Among 43 peptides in 9-h papain-generated hydrolysate P9, 4 peptides were found to be potent CEase inhibitors. Molecular docking revealed that WPMLQPKVM, CLSPLQMR, MYQQWKFL, and CLSPLQFR from P9 hydrolysates were able to bind to the active site of CEase with good docking scores and molecular mechanics-generalized born surface area binding energies. Overall, this is the first study reporting CEase inhibitory potential of peptides generated from milk proteins.
    Matched MeSH terms: Enzyme Inhibitors/chemistry; Milk/chemistry; Milk Proteins/chemistry*; Papain/chemistry; Peptides/chemistry*; Protein Hydrolysates/chemistry; Subtilisins/chemistry
  18. Lythell E, Suardíaz R, Hinchliffe P, Hanpaibool C, Visitsatthawong S, Oliveira ASF, et al.
    Chem Commun (Camb), 2020 Jun 23;56(50):6874-6877.
    PMID: 32432618 DOI: 10.1039/d0cc02520h
    MCR (mobile colistin resistance) enzymes catalyse phosphoethanolamine (PEA) addition to bacterial lipid A, threatening the "last-resort" antibiotic colistin. Molecular dynamics and density functional theory simulations indicate that monozinc MCR supports PEA transfer to the Thr285 acceptor, positioning MCR as a mono- rather than multinuclear member of the alkaline phosphatase superfamily.
    Matched MeSH terms: Alkaline Phosphatase/chemistry*; Anti-Bacterial Agents/chemistry*; Bacterial Proteins/chemistry*; Colistin/chemistry*; Ethanolamines/chemistry; Lipid A/chemistry; Zinc/chemistry*
  19. Chew SC
    Food Res Int, 2020 05;131:108997.
    PMID: 32247493 DOI: 10.1016/j.foodres.2020.108997
    Rapeseed oil is the second most abundant produced edible oil in the world with low erucic acid and low glucosinolate. Thus, the quality of rapeseed oil had attracted global attention. Cold-pressed rapeseed oil appeared to be a preferred choice than refined oil as no solvent and less processing involved in the cold-pressing. The methods of cold-pressing and microwave pre-treatment on the extraction yield and bioactive compounds of rapeseed oil have been reviewed in this paper. Cold-pressed rapeseed oil offers health benefits due to its preserved fatty acid profile and bioactive compounds. High phenolic compounds, tocopherols, phytosterols, and carotenoids contents in the cold-pressed rapeseed oil offer health benefits like regulating blood lipid profile, insulin sensitivity, and glycemic control, as well as offer antioxidant and cytotoxic activity. Besides using as edible oil, cold-pressed rapeseed oil find applications in animal feed, chemical, and fuel.
    Matched MeSH terms: Brassica napus/chemistry*
  20. Shafie MH, Yusof R, Samsudin D, Gan CY
    Int J Biol Macromol, 2020 Nov 15;163:1276-1282.
    PMID: 32673725 DOI: 10.1016/j.ijbiomac.2020.07.109
    The potential of Averrhoa bilimbi pectin (ABP) as a source of biopolymer for edible film (EF) production was explored, and deep eutectic solvent (DES) (1% w/w) containing choline chloride-citric acid monohydrate at a molar ratio of 1:1 was used as the plasticizer. The EF-ABP3:1, which was produced from ABP with large branch size, showed a higher value of melting temperature (175.30 °C), tensile stress (7.32 MPa) and modulus (33.64 MPa). The EF-ABP3:1 also showed better barrier properties by obtaining the lowest water vapor transmission rates (1.10-1.18 mg/m2.s) and moisture absorption values (2.61-32.13%) depending on the relative humidity compared to other EF-ABPs (1.39-1.83 mg/m2.s and 3.48-51.50%, respectively) that have linear structure with smaller branch size. From these results, it was suggested that the galacturonic acid content, molecular weight, degree of esterification and pectin structure of ABP significantly influenced the properties of EFs. The interaction of highly branched pectin chains was stronger than the linear chains, thus reduced the effect of plasticizer and produced a mechanically stronger EF with better barrier properties. Hence, it was suggested that these EFs could be used as alternative degradable packaging/coating materials.
    Matched MeSH terms: Biopolymers/chemistry; Choline/chemistry; Pectins/chemistry*; Plasticizers/chemistry; Solvents/chemistry; Citric Acid/chemistry; Averrhoa/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links