Displaying publications 41 - 60 of 180 in total

Abstract:
Sort:
  1. Noor Albannia Natasya Jabi, Hazmi Awang Damit
    Borneo Akademika, 2019;3(1):1-9.
    MyJurnal
    Heterotrigona itama is a Malaysian stingless bee species that actively reared for meliponiculture. This stingless bee is cultivated in a commercial scale for its honey production, propolis and among the greatest commercial potential as crop pollinators. However, this species has been potentially exposed to agronomic practices, among which the use of synthetic insecticides against pests.The indirect toxicity effect of the post-insecticide had affected the mortalities of H. itama especially, to the foragers. Due to that, a study has been conducted to determine the lethal concentration of 50% (LC50) and 95% (LC95) of the selected insecticides against stingless bee forager workers through residual exposure. The bioassay test was conducted to the local stingless bee H. itama at Agricultural Research Station, Tenom. Four commonly used insecticides in crop protection; Deltamethrin, Chlorpyrifos, Cypermethrin and Malathion were tested at five concentrations that diluted with 500 ml of distilled water in three replications for each insecticide. Lethal concentrations (LC50 and LC95) were obtained from probit analysis after 1-hour dry residues exposure and 24-hour mortality observation. The result shows that; all four tested insecticides were harmful to H. itama through dry residue. Deltamethrin shows the higher value of LC50 (1.256 ml) and LC95 (3.582ml) that make it less toxic to the H. itama than cypermethrin, malathion, and chlorpyrifos, however, as the concentration gets higher it becomes more toxic.
    Matched MeSH terms: Biological Assay
  2. Tabbabi A, Daaboub J, Ben-Cheikh R, Laamari A, Feriani M, Boubaker C, et al.
    Trop Biomed, 2018 Dec 01;35(4):872-879.
    PMID: 33601837
    Despite the public health importance of Culex pipiens pipiens, their resistance to pirimiphos-methyl insecticides has not been explored enough. Late third and early fourth larvae of Culex pipiens pipiens were collected from three localities between 2003 and 2005 in Northern and Southern Tunisia. All bioassays were carried out using pirimiphosmethyl and propoxur insecticides. Populations of Culex pipiens pipiens were susceptible, moderate and resistant to pirimiphos-methyl insecticide. Resistance to this compound ranged from 2.62 in sample # 2 to 19.9 in sample # 1. The moderate resistance (5.25) was recorded in sample # 3. Synergist's tests showed that the resistance to pirimiphos-methyl was not affected by detoxification enzymes. However, biochemical assays showed the involvement of both metabolic (esterases) and target site (insensitive acetylcholinesterase) resistance mechanisms. The highest frequencies of the resistant phenotypes ([RS] and [RR]) (<0.74) were detected in the most resistant samples (#1). Four esterases enzymes including C1 encoded by the Est-1 locus and three esterases encoded by the Ester super locus: A2-B2, A4-B4 (or A5-B5, which has the same electrophoretic mobility) and B12 were detected. The highest (0.61) and the lowest (0.22) frequencies of these esterases were recorded in samples # 1 (Sidi Hcine) and # 2 (El Fahs) which recorded the highest and the lowest level of resistance, respectively. Monitoring of insecticide resistance should be evaluated regularly for management of vector control.
    Matched MeSH terms: Biological Assay
  3. Daud MNH, Wibowo A, Abdullah N, Ahmad R
    Food Chem, 2018 Nov 15;266:200-214.
    PMID: 30381177 DOI: 10.1016/j.foodchem.2018.05.120
    We have previously reported on the antioxidant potential of Artocarpus heterophyllus J33 (AhJ33) variety fruit waste from different extraction methods. In the study, the rind maceration extract (RDM) exhibited the highest phenolic and polyphenolic contents and strongest antioxidant potential measured by the DPPH assay (R2 = 0.99). In this paper, we now report on the bioassay-guided fractionation of the active ethyl acetate (EtOAC) fraction of RDM and its TOF-LCMS analysis. Seven sub-fractions resulting from the chromatographic separation of the EtOAC fraction showed radical scavenging activities between 80 and 94% inhibition. Subsequent LCMS analysis led to the identification of fifteen compounds comprising 5 phenolics and 10 non-phenolic compounds, 11 of which are reported for the first time from AhJ33 variety. Most of the identified compounds have been reported to possess antioxidant activity in many previous studies. This indicates that AhJ33 is a promising source of antioxidants for the development of food and nutraceutical products.
    Matched MeSH terms: Biological Assay
  4. Abu-Bakar A, Hu H, Lang MA
    Basic Clin Pharmacol Toxicol, 2018 Sep;123 Suppl 5:72-80.
    PMID: 29788535 DOI: 10.1111/bcpt.13046
    The murine cytochrome P450 2a5 (Cyp2a5) gene is regulated by complex interactions of various stress-activated transcription factors (TFs). Elevated Cyp2a5 transcription under chemical-induced stress conditions is achieved by interplay between the various TFs - including as aryl hydrocarbon receptor (AhR) and nuclear factor (erythroid-derived 2)-like 2 wild-type (Nrf2) - at the 'stress-responding' cluster of response elements on the Cyp2a5 promoter, as well as through mRNA stabilization mediated by interaction of the stress-activated heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) with the 3'-UTR of the CYP2A5 mRNA. We designed a unique toxicity pathway-based reporter assay to include regulatory regions from both the 5' and the 3' untranslated regions of Cyp2a5 in a luciferase reporter plasmid to reflect in vivo responses to chemical insult. Human breast cancer MCF-7 cells were stably transfected with pGL4.38-Cyp2a5_Wt3k (wild-type) or mutant - pGL4.38-Cyp2a5_StREMut and pGL4.38-Cyp2a5_XREMut - reporter gene to monitor chemical-induced cellular response mediated by AhR and Nrf2 signalling. The recombinant cells were treated with representative of AhR agonist, polycyclic aromatic hydrocarbons, brominated flame retardant, fluorosurfactant, aromatic organic compound and metal, to determine the sensitivity of the Cyp2a5 promoter-based gene reporter assays to chemical insults by measuring the LC50 and EC50 of the respective chemicals. The three assays are sensitive to sublethal cellular responses of chemicals, which is an ideal feature for toxicity pathway-based bioassay for toxicity prediction. The wild-type reporter responded well to chemicals that activate crosstalk between the AhR and Nrf2, whilst the mutant reporters effectively gauge cellular response driven by either Nrf2/StRE or AhR/XRE signalling. Thus, the three gene reporter assays could be used tandemly to determine the predominant toxicity pathway of a given compound.
    Matched MeSH terms: Biological Assay/methods*
  5. Gabriel S, Rasheed AK, Siddiqui R, Appaturi JN, Fen LB, Khan NA
    Parasitol Res, 2018 Jun;117(6):1801-1811.
    PMID: 29675682 DOI: 10.1007/s00436-018-5864-0
    Brain-eating amoebae (Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri) have gained increasing attention owing to their capacity to produce severe human and animal infections involving the brain. Early detection is a pre-requisite in successful prognosis. Here, we developed a nanoPCR assay for the rapid detection of brain-eating amoebae using various nanoparticles. Graphene oxide, copper and alumina nanoparticles used in this study were characterized using Raman spectroscopy measurements through excitation with a He-Ne laser, while powder X-ray diffraction patterns were taken on a PANanalytical, X'Pert HighScore diffractometer and the morphology of the materials was confirmed using high-resolution transmission electron microscopy (HRTEM). Using nanoparticle-assisted PCR, the results revealed that graphene oxide, copper oxide and alumina nanoparticles significantly enhanced PCR efficiency in the detection of pathogenic free-living amoebae using genus-specific probes. The optimal concentration of graphene oxide, copper oxide and alumina nanoparticles for Acanthamoeba spp. was determined at 0.4, 0.04 and 0.4 μg per mL respectively. For B. mandrillaris, the optimal concentration was determined at 0.4 μg per mL for graphene oxide, copper oxide and alumina nanoparticles, and for Naegleria, the optimal concentration was 0.04, 4.0 and 0.04 μg per mL respectively. Moreover, combinations of these nanoparticles proved to further enhance PCR efficiency. The addition of metal oxide nanoparticles leads to excellent surface effect, while thermal conductivity property of the nanoparticles enhances PCR productivity. These findings suggest that nanoPCR assay has tremendous potential in the clinical diagnosis of parasitic infections as well as for studying epidemiology and pathology and environmental monitoring of other microbes.
    Matched MeSH terms: Biological Assay
  6. Tan CS, Yam MF
    Naunyn Schmiedebergs Arch Pharmacol, 2018 06;391(6):561-569.
    PMID: 29552696 DOI: 10.1007/s00210-018-1481-9
    Previous studies have demonstrated that 3'-hydroxy-5,6,7,4'-tetramethoxyflavone (TMF) content in Orthosiphon stamineus fractions correlate with its vasorelaxation activity. Even with the availability of previous studies, there is still very little information on the vasorelaxation effect of TMF, and few scientific studies have been carried out. Therefore, the present study was designed to investigate the vasorelaxation activity and mechanism of action of the TMF. The vasorelaxation activity and the underlying mechanisms of TMF were evaluated on thoracic aortic rings isolated from Sprague Dawley rats. TMF caused the relaxation of aortic rings with endothelium pre-contracted with phenylephrine. However, the vasorelaxant effect of TMF was significantly decreased in PE-primed endothelium-denuded and potassium chloride-primed endothelium-intact aortic rings. In the presence of Nω-nitro-L-arginine methyl ester, methylene blue, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, indomethacin, tetraethylammonium, 4-aminopyridine, barium chloride, atropine and propranolol, the relaxation stimulated by TMF was significantly reduced. TMF was also found to reduce Ca2+ release from sarcoplasmic reticulum (via IP3R) and block calcium channels (VOCC). The present study demonstrates the vasorelaxant effect of TMF involves NO/sGC/cGMP and prostacyclin pathways, calcium and potassium channels and muscarinic and beta-adrenergic receptors.
    Matched MeSH terms: Biological Assay
  7. Ismail BA, Kafy HT, Sulieman JE, Subramaniam K, Thomas B, Mnzava A, et al.
    Parasit Vectors, 2018 03 02;11(1):122.
    PMID: 29499751 DOI: 10.1186/s13071-018-2732-9
    BACKGROUND: Long-lasting insecticidal nets (LLINs) (with pyrethroids) and indoor residual spraying (IRS) are the cornerstones of the Sudanese malaria control program. Insecticide resistance to the principal insecticides in LLINs and IRS is a major concern. This study was designed to monitor insecticide resistance in Anopheles arabiensis from 140 clusters in four malaria-endemic areas of Sudan from 2011 to 2014. All clusters received LLINs, while half (n = 70), distributed across the four regions, had additional IRS campaigns.

    METHODS: Anopheles gambiae (s.l.) mosquitoes were identified to species level using PCR techniques. Standard WHO insecticide susceptibility bioassays were carried out to detect resistance to deltamethrin (0.05%), DDT (4%) and bendiocarb (0.1%). TaqMan assays were performed on random samples of deltamethrin-resistant phenotyped and pyrethrum spray collected individuals to determine Vgsc-1014 knockdown resistance mutations.

    RESULTS: Anopheles arabiensis accounted for 99.9% of any anopheline species collected across all sites. Bioassay screening indicated that mosquitoes remained susceptible to bendiocarb but were resistance to deltamethrin and DDT in all areas. There were significant increases in deltamethrin resistance over the four years, with overall mean percent mortality to deltamethrin declining from 81.0% (95% CI: 77.6-84.3%) in 2011 to 47.7% (95% CI: 43.5-51.8%) in 2014. The rate of increase in phenotypic deltamethrin-resistance was significantly slower in the LLIN + IRS arm than in the LLIN-only arm (Odds ratio 1.34; 95% CI: 1.02-1.77). The frequency of Vgsc-1014F mutation varied spatiotemporally with highest frequencies in Galabat (range 0.375-0.616) and New Halfa (range 0.241-0.447). Deltamethrin phenotypic-resistance correlated with Vgsc-1014F frequency.

    CONCLUSION: Combining LLIN and IRS, with different classes of insecticide, may delay pyrethroid resistance development, but the speed at which resistance develops may be area-specific. Continued monitoring is vital to ensure optimal management and control.

    Matched MeSH terms: Biological Assay
  8. Lim KT, Amanah A, Chear NJ, Zahari Z, Zainuddin Z, Adenan MI
    Exp Parasitol, 2018 Jan;184:57-66.
    PMID: 29175017 DOI: 10.1016/j.exppara.2017.11.007
    In our ongoing work searching for new trypanocidal lead compounds from Malaysian plants, two known piperidine alkaloids (+)-spectaline (1) and iso-6-spectaline (2) were isolated from the leaves of Senna spectabilis (sin. Cassia spectabilis). Analysis of the 1H and 13C NMR spectra showed that 1 and 2 presented analytical and spectroscopic data in full agreement with those published in the literature. All compounds were screened in vitro against Trypanosoma brucei rhodesiense in comparison to the standard drug pentamidine. Compound 1 and 2 inhibited growth of T. b. rhodesiense with an IC50 value of 0.41 ± 0.01 μM and 0.71 ± 0.01 μM, without toxic effect on L6 cells with associated a selectivity index of 134.92 and 123.74, respectively. These data show that piperidine alkaloids constitute a class of natural products that feature a broad spectrum of biological activities, and are potential templates for the development of new trypanocidal drugs. To our knowledge, the compounds are being reported for the first time to have inhibitory effects on T. b. rhodesiense. The ultrastructural alterations in the trypanosome induced by 1 and 2, leading to programmed cell death were characterized using electron microscopy. These alterations include wrinkling of the trypanosome surface, formation of autophagic vacuoles, disorganization of kinetoplast, and swelling of the mitochondria. These findings evidence a possible autophagic cell death.
    Matched MeSH terms: Biological Assay
  9. Ali SM, Raman J, Lakshmanan H, Ling TC, Phan CW, Tan YS, et al.
    Int J Med Mushrooms, 2018;20(11):1021-1030.
    PMID: 30806227 DOI: 10.1615/IntJMedMushrooms.2018028307
    Lentinus edodes (shiitake mushroom) has exhibited fibrinolytic activity. We synthesized and characterized selenium nanoparticles (SeNPs) using protein precipitated from the mushroom. We also investigated the fibrinolytic activity of the SeNPs. The proteins from a crude extract of L. edodes were recovered through the use of aqueous 2-phase separation, and these we used as the capping agent in SeNP biosynthesis. We characterized the SeNPs using UV-visible spectrophotometry, field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX), transmission electron microscopy (TEM), particle size distribution analysis, and Fourier transform infrared spectroscopy (FT-IR). The fibrinolytic capability of the SeNPs was tested through an in vitro fibrin plate assay. The UV-visible spectra showed maximal absorbance at 220 nm. FESEM images showed that the SeNPs were dispersed and did not clump. The TEM images revealed a spherical shape and average size of the SeNPs. The particle size distribution analysis confirmed the mean size of the SeNPs at 64.53 nm. A strong signal for the presence of selenium was observed in the EDX analysis. The FT-IR spectrum revealed the involvement of protein functional groups in the reduction of sel-enite. Overall, the SeNPs capped with protein from shiitake mushroom were effective as an in vitro fibrinolytic agent.
    Matched MeSH terms: Biological Assay
  10. Norazsida Binti Ramli, Nur Elia Amira Mohd Roslin, Deny Susanti
    MyJurnal
    World Health Organization (WHO) estimated over 100 million dengue infections to happen annually worldwide involving more than 2.5 billion people. Temephos or abate is a larvicide that has been used in vector control to eradicate mosquito larvae. Though practically low risk, there had been resistance problem reported with continuous use. This study seeks to find an effective and safer alternative to abate by assessing the use of ethanolic extract of Murraya koenigii leaves as larvicidal agent against Aedes aegypti. M.koenigii leaves were macerated for 3 days with absolute ethanol and evaporated using rotary vapor to produce the crude extract. The crude extract was subjected to phytochemical screening using standard qualitative method. For bioassay, the crude
    extract underwent a serial dilution to produce 3 concentrations of 100 ppm (C1), 50 ppm (C2) and 10 ppm (C3) with abate and absolute ethanol as negative and positive control respectively. Bioassay for larvicidal effect was conducted in accordance to WHO standard method. Phytochemical screening of ethanolic extract of M. koenigii leaves revealed the presence of alkaloid, steroid and saponin. The bioassay shows that after 24 hours, the mortality rate of C1, C2 and C3 larvae were 100%, 38% and 0% and when further extended to 48 hours, the rate increased to 100% and 46% for C2 and C3 respectively. The LC50 and LC99 post 24 hours were 54.489 ppm and 93.961 ppm respectively whilst at post 48 hours, the LC50 and LC99 were 10.263 ppm and 16.176 ppm respectively. The results show that up to 48 hours duration of exposure, the mortality
    rate increase whilst the lethal concentration (LC50 and LC99) decreases. Upon examination on larvae deformities at post 24 and 48 hours, all test concentrations and negative control exhibit normal morphology. Positive control, however, exhibit deformities characterized by twisted and fragmented insides. When statistically analyzed, C1 larvicidal activity was proven comparable with abate at 24 hours while C2 needed 48 hours exposure to be on par. Based on the results, it could be argued that the ethanolic extract of M.koenigii leaves does hold promising value to be further developed as larvicidal.
    Matched MeSH terms: Biological Assay
  11. Ravi R, Zulkrnin NSH, Rozhan NN, Nik Yusoff NR, Mat Rasat MS, Ahmad MI, et al.
    PLoS One, 2018;13(11):e0206982.
    PMID: 30399167 DOI: 10.1371/journal.pone.0206982
    BACKGROUND: The resistance problem of dengue vectors to different classes of insecticides that are used for public health has raised concerns about vector control programmes. Hence, the discovery of alternative compounds that would enhance existing tools is important for overcoming the resistance problem of using insecticides in vectors and ensuring a chemical-free environment. The larvicidal effects of Azolla pinnata extracts by using two different extraction methods with methanol solvent against Aedes in early 4th instar larvae was conducted.

    METHODS: The fresh Azolla pinnata plant from Kuala Krai, Kelantan, Malaysia was used for crude extraction using Soxhlet and maceration methods. Then, the chemical composition of extracts and its structure were identified using GCMS-QP2010 Ultra (Shimadzu). Next, following the WHO procedures for larval bioassays, the extracts were used to evaluate the early 4th instar larvae of Aedes mosquito vectors.

    RESULTS: The larvicidal activity of Azolla pinnata plant extracts evidently affected the early 4th instar larvae of Aedes aegypti mosquito vectors. The Soxhlet extraction method had the highest larvicidal effect against Ae. aegypti early 4th instar larvae, with LC50 and LC95 values of 1093 and 1343 mg/L, respectively. Meanwhile, the maceration extraction compounds were recorded with the LC50 and LC95 values of 1280 and 1520 mg/L, respectively. The larvae bioassay test for Ae. albopictus showed closely similar values in its Soxhlet extraction, with LC50 and LC95 values of 1035 and 1524 mg/L, compared with the maceration extraction LC50 and LC95 values of 1037 and 1579 mg/L, respectively. The non-target organism test on guppy fish, Poecilia reticulata, showed no mortalities and posed no toxic effects. The chemical composition of the Azolla pinnata plant extract has been found and characterized as having 18 active compounds for the Soxhlet method and 15 active compounds for the maceration method.

    CONCLUSIONS: Our findings showed that the crude extract of A. pinnata bioactive molecules are effective and have the potential to be developed as biolarvicides for Aedes mosquito vector control. This study recommends future research on the use of active ingredients isolated from A. pinnata extracts and their evaluation against larvicidal activity of Aedes in small-scale field trials for environmentally safe botanical insecticide invention.

    Matched MeSH terms: Biological Assay
  12. Jamadon NK, Busairi N, Syahir A
    Protein Pept Lett, 2018;25(1):90-95.
    PMID: 29237368 DOI: 10.2174/0929866525666171214111503
    BACKGROUND: Mercury (II) ion, Hg2+ is among the most common pollutants with the ability to affect the environment. The implications of their elevation in the environment are mainly due to the industrialization and urbanization process. Current methods of Hg2+ detection primarily depend on sophisticated and expensive instruments. Hence, an alternative and practical way of detecting Hg2+ ions is needed to go beyond these limitations. Here, we report a detection method that was developed using an inhibitive enzymatic reaction that can be monitored through a smartphone. Horseradish peroxidase (HRP) converted 4-aminoantipyrene (4-AAP) into a red colored product which visible with naked eye. A colorless product, on the other hand, was produced indicating the presence of Hg2+ that inhibit the reaction.

    OBJECTIVES: The aim of this study is to develop a colorimetric sensor to detect Hg2+ in water sources using HRP inhibitive assay. The system can be incorporated with a mobile app to make it practical for a prompt in-situ analysis.

    METHODS: HRP enzyme was pre-incubated with different concentration of Hg2+ at 37°C for 1 hour prior to the addition of chromogen. The mix of PBS buffer, 4-AAP and phenol which act as a chromogen was then added to the HRP enzyme and was incubated for 20 minutes. Alcohol was added to stop the enzymatic reaction, and the change of colour were observed and analyse using UV-Vis spectrophotometer at 520 nm wavelength. The results were then analysed using GraphPad PRISM 4 for a non-linear regression analysis, and using Mathematica (Wolfram) 10.0 software for a hierarchical cluster analysis. The samples from spectroscopy measurement were directly used for dynamic light scattering (DLS) evaluation to evaluate the changes in HRP size due to Hg2+ malfunctionation. Finally, molecular dynamic simulations comparing normal and malfunctioned HRP were carried out to investigate structural changes of the HRP using YASARA software.

    RESULTS: Naked eye detection and data from UV-Vis spectroscopy showed good selectivity of Hg2+ over other metal ions as a distinctive color of Hg2+ is observed at 0.5 ppm with the IC50 of 0.290 ppm. The mechanism of Hg2+ inhibition towards HRP was further validated using a dynamic light scattering (DLS) and molecular dynamics (MD) simulation to ensure that there is a conformational change in HRP size due to the presence of Hg2+ ions. The naked eye detection can be quantitatively determined using a smartphone app namely ColorAssist, suggesting that the detection signal does not require expensive instruments to be quantified.

    CONCLUSION: A naked-eye colorimetric sensor for mercury ions detection was developed. The colour change due to the presence of Hg2+ can be easily distinguished using an app via a smartphone. Thus, without resorting to any expensive instruments that are mostly laboratory bound, Hg2+ can be easily detected at IC50 value of 0.29 ppm. This is a promising alternative and practical method to detect Hg2+ in the environment.

    Matched MeSH terms: Biological Assay/methods*
  13. Suleiman M, Jelip J, Rundi C, Chua TH
    Am J Trop Med Hyg, 2017 Dec;97(6):1731-1736.
    PMID: 29016314 DOI: 10.4269/ajtmh.17-0589
    During the months of January-February and May-June 2013 coinciding with the red tide occurrence in Kota Kinabalu, Sabah, Malaysia, six episodes involving 58 cases of paralytic shellfish poisoning (PSP) or saxitoxin (STX) poisoning and resulting in four deaths were reported. Many of them were intoxicated from consuming shellfish purchased from the markets, whereas others were intoxicated from eating shellfish collected from the beach. Levels of STX in shellfish collected from the affected areas were high (mean 2,920 ± 780 and 360 ± 140 µg STX equivalents/100 g shellfish meat respectively for the two periods). The count of toxic dinoflagellates (Pyrodinium bahamense var compressum) of the sea water sampled around the coast was also high (mean 34,200 ± 10,300 cells/L). Species of shellfish containing high levels of STX were Atrina fragilis, Perna viridis, and Crassostrea belcheri. The age of victims varied from 9 to 67 years. Symptoms presented were typical of PSP, such as dizziness, numbness, vomiting, and difficulty in breathing. Recommended steps to prevent or reduce PSP in future red tide season include better monitoring of red tide occurrence, regular sampling of shellfish for determination of STX level, wider dissemination of information on the danger of eating contaminated shellfish among the communities, fishermen, and fishmongers.
    Matched MeSH terms: Biological Assay
  14. Yahya MFZR, Alias Z, Karsani SA
    Protein J, 2017 08;36(4):286-298.
    PMID: 28470375 DOI: 10.1007/s10930-017-9719-9
    Salmonella typhimurium is an important biofilm-forming bacteria. It is known to be resistant to a wide range of antimicrobials. The present study was carried out to evaluate the effects of dimethyl sulfoxide (DMSO) against S. typhimurium biofilm and investigate whole-cell protein expression by biofilm cells following treatment with DMSO. Antibiofilm activities were assessed using pellicle assay, crystal violet assay, colony-forming unit counting and extracellular polymeric substance (EPS) matrix assay whilst differential protein expression was investigated using a combination of one dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis, tandem mass spectrometry and bioinformatics. Treatment with 32% DMSO inhibited pellicle formation, biofilm viability, biofilm biomass and several important components of EPS matrix. Subtractive protein profiling identified two unique protein bands (25.4 and 51.2 kDa) which were present only in control biofilm and not in 32% DMSO-treated biofilm. In turn, 29 and 46 proteins were successfully identified from the protein bands of 25.4 and 51.2 kDa respectively. Protein interaction network analysis identified several biological pathways to be affected, including glycolysis, PhoP-PhoQ phosphorelay signalling and flagellar biosynthesis. The present study suggests that DMSO may inhibit multiple biological pathways to control biofilm formation.
    Matched MeSH terms: Biological Assay
  15. Dieng H, Ellias SB, Satho T, Ahmad AH, Abang F, Ghani IA, et al.
    Environ Sci Pollut Res Int, 2017 Jun;24(17):14782-14794.
    PMID: 28470499 DOI: 10.1007/s11356-017-8711-4
    In dengue mosquitoes, successful embryonic development and long lifespan are key determinants for the persistence of both virus and vector. Therefore, targeting the egg stage and vector lifespan would be expected to have greater impacts than larvicides or adulticides, both strategies that have lost effectiveness due to the development of resistance. Therefore, there is now a pressing need to find novel chemical means of vector control. Coffee contains many chemicals, and its waste, which has become a growing environmental concern, is as rich in toxicants as the green coffee beans; these chemicals do not have a history of resistance in insects, but some are lost in the roasting process. We examined whether exposure to coffee during embryonic development could alter larval eclosion and lifespan of dengue vectors. A series of bioassays with different coffee forms and their residues indicated that larval eclosion responses of Aedes albopictus and Ae. aegypti were appreciably lower when embryonic maturation occurred in environments containing coffee, especially roasted coffee crude extract (RCC). In addition, the lifespan of adults derived from eggs that hatched successfully in a coffee milieu was reduced, but this effect was less pronounced with roasted and green coffee extracts (RCU and GCU, respectively). Taken together, these findings suggested that coffee and its residues have embryocidal activities with impacts that are carried over onto the adult lifespan of dengue vectors. These effects may significantly reduce the vectorial capacity of these insects. Reutilizing coffee waste in vector control may also represent a realistic solution to the issues associated with its pollution.
    Matched MeSH terms: Biological Assay
  16. Lau PS, Leong KV, Ong CE, Dong AN, Pan Y
    Biochem Genet, 2017 Feb;55(1):48-62.
    PMID: 27578295 DOI: 10.1007/s10528-016-9771-8
    Cytochrome P450 (CYP) 2C19 is essential for the metabolism of clinically used drugs including omeprazole, proguanil, and S-mephenytoin. This hepatic enzyme exhibits genetic polymorphism with inter-individual variability in catalytic activity. This study aimed to characterise the functional consequences of CYP2C19*23 (271 G>C, 991 A>G) and CYP2C19*24 (991 A>G, 1004 G>A) in vitro. Mutations in CYP2C19 cDNA were introduced by site-directed mutagenesis, and the CYP2C19 wild type (WT) as well as variants proteins were subsequently expressed using Escherichia coli cells. Catalytic activities of CYP2C19 WT and those of variants were determined by high performance liquid chromatography-based essay employing S-mephenytoin and omeprazole as probe substrates. Results showed that the level of S-mephenytoin 4'-hydroxylation activity of CYP2C19*23 (V max 111.5 ± 16.0 pmol/min/mg, K m 158.3 ± 88.0 μM) protein relative to CYP2C19 WT (V max 101.6 + 12.4 pmol/min/mg, K m 123.0 ± 19.2 μM) protein had no significant difference. In contrast, the K m of CYP2C19*24 (270.1 ± 57.2 μM) increased significantly as compared to CYP2C19 WT (123.0 ± 19.2 μM) and V max of CYP2C19*24 (23.6 ± 2.6 pmol/min/mg) protein was significantly lower than that of the WT protein (101.6 ± 12.4 pmol/min/mg). In vitro intrinsic clearance (CLint = V max/K m) for CYP2C19*23 protein was 85.4 % of that of CYP2C19 WT protein. The corresponding CLint value for CYP2C19*24 protein reduced to 11.0 % of that of WT protein. These findings suggested that catalytic activity of CYP2C19 was not affected by the corresponding amino acid substitutions in CYP2C19*23 protein; and the reverse was true for CYP2C19*24 protein. When omeprazole was employed as the substrate, K m of CYP2C19*23 (1911 ± 244.73 μM) was at least 100 times higher than that of CYP2C19 WT (18.37 ± 1.64 μM) and V max of CYP2C19*23 (3.87 ± 0.74 pmol/min/mg) dropped to 13.4 % of the CYP2C19 WT (28.84 ± 0.61 pmol/min/mg) level. Derived from V max/K m, the CLint value of CYP2C19 WT was 785 folds of CYP2C19*23. K m and V max values could not be determined for CYP2C19*24 due to its low catalytic activity towards omeprazole 5'-hydroxylation. Therefore, both CYP2C19*23 and CYP2C19*24 showed marked reduced activities of metabolising omeprazole to 5-hydroxyomeprazole. Hence, carriers of CYP2C19*23 and CYP2C19*24 allele are potentially poor metabolisers of CYP2C19-mediated substrates.
    Matched MeSH terms: Biological Assay
  17. Rosilawati, R., Lee, H.L., Nazni, W.A., Nurulhusna, A.H., Roziah, A., Khairul Asuad, M., et al.
    MyJurnal
    Vector control is still the principal method to control dengue and chemical insecticides, especially the
    pyrethroids such as permethrin are the forerunners of mosquito control agent. Intensive and extensive use
    of pyrethroids often result in resistance, thereby hampering control efforts. The present study was
    conducted to evaluate the susceptible status of Aedes aegypti, the primary vector of dengue against
    permethrin. A nationwide mosquito sampling via ovitrapping was conducted in 12 dengue hotspots across 5
    states in Peninsular Malaysia. Field collected Aedes eggs were hatched and reared until L3 larval and further
    identified it species. Adult F0 Aedes aegypti were reared until F1 progeny and the female were used in
    adult assay, performed according to World Health Organization (WHO) protocol as to determine the
    resistance level. The laboratory strain maintained for more than 1000 generations that were susceptible to
    permethrin served as the control strain. Evaluation of resistance ratio was assessed by comparing the
    knockdown rate with laboratory susceptible strain. In this present study, 70% ofAe. aegypti population from
    dengue hotspots was highly resistance to permethrin. The study clearly demonstrated that widespread of
    permethrin resistant Ae. aegypti in Malaysian mosquito’s population, indicating the need of implementing
    an efficient pyrethroid resistance management.
    Matched MeSH terms: Biological Assay
  18. Zulkifli, A.F., Tham, L.G., Perumal, N., Azzeme, A., Shukor, M.Y., Shaharuddin, N.A., et al.
    MyJurnal
    Acetylcholinesterase (AChE) is usually used as an inhibitive assay for insecticides. A lesser
    known property of AChE is its inhibition by heavy metals. In this work we evaluate an AChE
    from brains of striped snakehead (Channa striatus) wastes from aquaculture industry as an
    inhibitive assay for heavy metals. We discovered that the AChE was inhibited almost completely
    by Hg2+, Ag2+ and Cu2+ during an initial screening. When tested at various concentrations, the
    heavy metals exhibited exponential decay type inhibition curves. The calculated IC50 for the
    heavy metals Hg2+, Ag2+, Pb2+, Cu2+ and Cr6+ were 0.08432, 0.1008, 0.1255, 0.0871, and 0.1771,
    respectively. The IC50 for these heavy metals are comparable and some are lower than the IC50
    values from the cholinesterases from previously studied fish. The assay can be carried out in less
    than 30 minutes at ambient temperature.
    Matched MeSH terms: Biological Assay
  19. Nurul Ain MB, Ismail BS, Nornasuha Y
    Sains Malaysiana, 2017;46:1413-1420.
    The use of allelopathy concept in weed management has received attentions to minimize extensively the reliance on herbicide applications on the agriculture industry in Malaysia. A laboratory study was conducted to evaluate the allelopathic potential of 15 Malaysian common weed species of different morphological characteristics (broadleaves, sedges and grasses). They were screened using the Sandwich method (from leaf litter leachate) and the Dish pack method (for testing the presence and content of volatile compounds in weeds). Among the 15 weed species tested, the leaf litter leachate of Centrosema pubescens was observed to be the most sensitive plant material inhibiting the growth of lettuce radicle (84%) and hypocotyl (55%) in the Sandwich bioassay compared to the control. This was followed by Asystasia gangentica (81%) and Cynodon dactylon (80%) inhibiting the lettuce radicle growth. In the Dish pack bioassay, Rhynchelytrum repens demonstrated maximum inhibition on the radicle and hypocotyl elongations by 44% and 29%, respectively, (over control) at 41 mm distance from the source well. Meanwhile, at the same distance, Cynodon dactylon was observed to have the least inhibitory effect on lettuce radicle growth by 12%. The results presented can be utilized as benchmark information for further research on the identification and isolation of allelochemicals for weed control strategies.
    Matched MeSH terms: Biological Assay
  20. Ahmad SJ, Abdul Rahim MBH, Baharum SN, Baba MS, Zin NM
    J Trop Med, 2017;2017:2189814.
    PMID: 29123551 DOI: 10.1155/2017/2189814
    Natural products continue to play an important role as a source of biologically active substances for the development of new drug. Streptomyces, Gram-positive bacteria which are widely distributed in nature, are one of the most popular sources of natural antibiotics. Recently, by using a bioassay-guided fractionation, an antimalarial compound, Gancidin-W, has been discovered from these bacteria. However, this classical method in identifying potentially novel bioactive compounds from the natural products requires considerable effort and is a time-consuming process. Metabolomics is an emerging "omics" technology in systems biology study which integrated in process of discovering drug from natural products. Metabolomics approach in finding novel therapeutics agent for malaria offers dereplication step in screening phase to shorten the process. The highly sensitive instruments, such as Liquid Chromatography-Mass Spectrophotometry (LC-MS), Gas Chromatography-Mass Spectrophotometry (GC-MS), and Nuclear Magnetic Resonance ((1)H-NMR) spectroscopy, provide a wide range of information in the identification of potentially bioactive compounds. The current paper reviews concepts of metabolomics and its application in drug discovery of malaria treatment as well as assessing the antimalarial activity from natural products. Metabolomics approach in malaria drug discovery is still new and needs to be initiated, especially for drug research in Malaysia.
    Matched MeSH terms: Biological Assay
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links