Introduction: Cosmos caudatus (Ulam Raja) is rich in phytochemicals and can be utilised in diet diversification strategies to improve the health of individuals. lbis study was designed to incorporate dry and aqueous extracts of C. caudatus for the preparation of herbal noodles. Methods: For this purpose, different proportions of dry extract (2, 4 and 6% dry extract) and aqueous extract (5, 10 and 15% aqueous extract) of C. caudatus were used. The physicochemical properties of noodles evaluated were pH, cooking time, cooking loss, texture and colour. Total polyphenol contents (TPq and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay were carried out to assess the antioxidant potential. Lastly, sensory appraisal of functional noodles was carried out to assess consumer acceptance and marketability. Results: The results on physicochemical properties indicated that the pH value of noodles varied from 8.66 to 10.47. In terms of textural analysis and colour properties, firmness and greenness (a*) were higher in dry extract noodles. TPC varied between 115to149 mg gallic acid equivalents (GAE/lOOg) whilst the highest DPPH free radical inhibition was exhibited in herbal noodles prepared using 4% dry extract (92.8%). In contrast, in terms of sensory appraisal, herbal noodles prepared with aqueous extract were more acceptable than dry extract noodles. Conclusion: C. caudatus can be utilised to prepare herbal noodles thus enhancing the dietary intake of phytochemicals especially antioxidants. Such functional foods can improve the health of consumers and offer the potential of protection against various ailments.
This research was to determine nutritional composition, essential and toxic elemental content, and major phenolic acid with antioxidant activity in Kadsura coccinea fruit. The results indicated that Kadsura coccinea fruit exhibited the high contents of total protein, total fat, ash and essential elements such as calcium (Ca), ferrum (Fe) and phosphorus (P). The levels of four common toxic elements, i.e. cadmium (Cd), mercury (Hg), arsenic (As) and lead (Pb), were lower than legal limits. By high-performance liquid chromatography (HPLC) analysis, gallic acid was identified as major phenolic acid in peel and pulp tissues. Its contents were no significant difference in both tissues. In comparison with two commercial antioxidants, the major phenolic acid extracted from Kadsura coccinea exhibited stronger 1,1-diphenyl-2-picrylhydrazyl radical-scavenging activity and reducing power. Kadsura coccinea fruit is a good source of nutrition and natural antioxidant. It is worthwhile to popularize this exotic fruit around the world.
Bioactive compounds from Quercus Infectoria (manjakani) were extracted with six different types of solvents: 100% methanol, ethanol, acetone, aqueous and 70% methanol and ethanol. High Performance liquid chromatography (HPLC) was used to identify and quantify the active compounds, namely gallic acid and tannic acid. Total phenolics content were determined by Folin-Ciocalteu while antioxidant and antibacterial activity were tested using DPPH free radicals scavenging and disc diffusion assay. The result revealed that aqueous extract contained the highest concentration of bioactive compounds compared to other types of solvents which are 51.14 mg/g sample and 1332.88 mg/g sample of gallic acid and tannic acid respectively.. The highest level of phenolic compound was found in 100% acetone extract (121 mg GAE/g). The results demonstrated that aqueous extract gives the highest antioxidant activity approximately 94.55% while acetone extract gives the largest inhibition zone for disc diffusion assay which is 19.00 mm respectively. The results revealed rich sources of gallic acid and tannic acid in Q. infectoria which might provide a novel source of these natural antioxidant and antibacterial activity.
Effects of different types of solvent on the antioxidant and antibacterial activity of Quercus infectoria extract have not been well documented. Therefore, extraction process was conducted using conventional Soxhlet extraction with six different types of solvent (100% methanol, ethanol, acetone, water and 70% methanol, and ethanol). High performance liquid chromatography was implemented to identify gallic acid and tannic acid in the extracts. Water extracts contained the highest concentration of both gallic acid and tannic acid compared to other types of solvent; 51.14 mg/g sample and 1332.88 mg/g sample of gallic acid and tannic acid. Meanwhile, antioxidant and antibacterial activity were tested using DPPH free radicals scavenging and disc diffusion assay. Results demonstrated that water extracts gave the highest antioxidant activity (approximately 94.55%), while acetone extract gave the largest inhibition zone for disc diffusion assay (19.00mm respectively). The results also revealed rich sources of gallic acid and tannic acid in Q. infectoria which might provide a novel source of these natural antioxidant and antibacterial activity.
Plant phenolics are being increasingly consumed globally with limited scientific and clinical evidence pertaining to safety and efficacy. The oil palm fruit contains a cocktail of phenolics, and palm oil production results in high volumes of aqueous by-products enriched in phenolics and bioactives. Several lines of evidence from in vitro and in vivo animal studies confirmed that the aqueous extract enriched in phenolics and other bioactives collectively known as oil palm phenolics (OPP) is safe and has potent bioactivity. A phase one clinical trial was conducted to evaluate the safety and effects of OPP in healthy volunteers. In this single-blind trial, 25 healthy human volunteers were supplemented with 450 mg gallic acid equivalent (GAE)/day of OPP or control treatments for a 60-day period. Fasting blood and urine samples were collected at days 1, 30 and 60. Medical examination was performed during these trial interventions. All clinical biochemistry profiles observed throughout the control and OPP treatment period were in the normal range with no major adverse effect (AE) or serious adverse effect (SAE) observed. Additionally, OPP supplementation resulted in improvement of total cholesterol and LDL-C levels, compared to the control treatment. The outcomes support our previous observations that OPP is safe and may have a protective role in reducing cholesterol levels.
Punica granatum (pomegranate), an edible fruit originating in the Middle East, has been used as a traditional medicine for treatment of pain and inflammatory conditions such as peptic ulcer. The numerous risks associated with nonsteroidal anti-inflammatory drugs (NSAIDs) for treatment of pain and inflammation give rise to using medicinal herbs as alternative therapies. This study aimed to evaluate the anti-inflammatory effect of isolated compounds from the ethyl acetate (EtOAc) fraction of P. granatum by determination of their inhibitory effects on lipopolysaccharide (LPS), stimulated nitric oxide (NO), prostaglandin E2 (PGE-2), interleukin-6 (IL-6) and cyclooxxgenase-2 (COX-2) release from RAW264.7 cells.
Bee pollen is considered as one of the functional foods due to its complex biochemical
properties. Bee pollen which is collected from pollen grains from various botanical sources
contains almost a complete nutrition such as carbohydrates, proteins, amino acids, vitamins
and minerals. Its beneficial effect on health is thought to be due to the presence of phenolic
compounds with its antioxidant activity. Antioxidant activities of ethanolic bee pollen extract
(BPE) from three species of Malaysian stingless bee; Trigona thoracica, Trigona itama and
Trigona apicalis in this study were measured using DPPH-HPLC method and gallic acid (GA)
as a standard reference. The percentage of DPPH inhibition by T. apicalis BPE at 1 mg/mL
showed the highest inhibition (39%, GA equivalent to 0.3 mg/mL) compared with T. itama
(14.3%, GA equivalent to 0.1 mg/mL) and T. thoracica (6.7%, GA equivalent to 0.05 mg/mL).
Our result was the first in reporting antioxidant activity of BPE measured using DPPH-HPLC
method from three different species of Malaysian stingless bee.
Ash gourd (Benincasa hispida, Bh) is traditionally claimed useful in treating asthma, cough, diabetes, haemoptysis and hemorrhages from internal organs, epilepsy, fever and balancing of the body heat. One of the major phenolic acids presented in Benincasa hispida is gallic acid, a phenolic compound which is linked with its ability in reducing Type II diabetes. The aim of the present study was to investigate the effect of different extraction techniques on the concentration of gallic acid in Bh. The Bh extracts were prepared with three different techniques namely; fresh extract (FE), low heating (LH) and drying and heating (DH). The gallic acid has been detected and quantified using high performance liquid chromatography (HPLC) coupled with uv-Vis detector. The amount of gallic acid detected in FE, LH and DH were 0.036, 0.050 and 0 272 mg1100 g, respectively. The limits of detection was 0.75 liglmL while the limit of quantification and recovery were 2.50 liglmL and 95 .53% , respectively. In summary, HPLC technique coupled with vv detector systems able to quantify gallic acid in Bh extracts. The gallic acid were present at higher concentration in Bh extracted using drying and heating, followed by low heating and fresh extract methods.
The plants of the Bougainvillea genus are widely explored regarding nutritive and medicinal purposes. In this study, dichloromethane (DCM) and methanol (MeOH) extracts of Bougainvillea glabra (Choisy.) aerial and flower parts were analyzed for high-performance liquid chromatography with photodiode array detection (HPLC-PDA), ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS) phytochemical composition, and enzyme inhibition potential against key enzymes involved in diabetes (α-amylase), skin problems (tyrosinase), and inflammatory disorders (lipoxygenase (LOX)). HPLC-PDA quantification revealed the identification of nine different polyphenolics, amongst which both flower extracts were richest. The flower MeOH extract contained the highest amount of catechin (6.31 μg/g), gallic acid (2.39 μg/g), and rutin (1.26 μg/g). However, none of the quantified compounds were detected in the aerial DCM extract. UHPLC-MS analysis of DCM extracts revealed the tentative identification of 27 secondary metabolites, where the most common belonged to terpenoid, alkaloid, and phenolic derivatives. Similarly, for enzyme inhibition, all the extracts presented moderate activity against tyrosinase and α-amylases, whereas, for LOX, both methanolic extracts showed higher percentage inhibition compared with DCM extracts. Based on our findings, B. glabra could be regarded as a perspective starting material for designing novel pharmaceuticals.
Allelopathy is a process in which one plant species may usefully or adversely affect the growth of other plant species
through the production of allelochemicals. During the present investigation, mulch effect of Jatropha curcas leaves was
evaluated on seed germination and seedling growth of maize varieties viz. Pioneer (V1), Azam (V2) and Jalal (V3). Mulch
was applied at 1 and 2 tons/hectare. Phenolic compounds were detected in Jatropha curcas leaf (131.15 mg gallic acid
eq./gm extract). Mulch applied at 2 tons/hectare significantly reduced seed germination (%), germination index, relative
water content, root width and seedling dry weight. From the findings of the present investigation, it was inferred that
Jatropha curcas leaves exhibited phytotoxic effects on maize at high concentrations.
We have developed gadolinium-based theranostic nanoparticles for co-delivery of drug and magnetic resonance imaging (MRI) contrast agent using Zn/Al-layered double hydroxide as the nanocarrier platform, a naturally occurring phenolic compound, gallic acid (GA) as therapeutic agent, and Gd(NO₃)₃ as diagnostic agent. Gold nanoparticles (AuNPs) were grown on the system to support the contrast for MRI imaging. The nanoparticles were characterized using techniques such as Hi-TEM, XRD, ICP-ES. Kinetic release study of the GA from the nanoparticles showed about 70% of GA was released over a period of 72 h. The in vitro cell viability test for the nanoparticles showed relatively low toxicity to human cell lines (3T3) and improved toxicity on cancerous cell lines (HepG2). A preliminary contrast property test of the nanoparticles, tested on a 3 Tesla MRI machine at various concentrations of GAGZAu and water (as a reference) indicates that the nanoparticles have a promising dual diagnostic and therapeutic features to further develop a better future for clinical remedy for cancer treatment.
Methanol extract ofMuntingia calaburaL. (family Muntingiaceae) leaf has been reported to exert various pharmacological activities including hepatoprotection. The present study was carried out to identify the most effective hepatoprotective partition derived from the extract and to determine the mechanisms of action involved. The extract was partitioned using solvents with different polarity to yield petroleum ether (PEMC), ethyl acetate (EAMC), and aqueous (AQMC) extracts. Each extract, at 250 mg/kg, was subjected to the paracetamol (PCM)-induced hepatotoxic assay and several parameters such as liver weight, liver/body weight ratio, serum liver enzymes' level, and histopathological examinations were determined. Each partition was also tested for their antioxidant and anti-inflammatory potentials. The most effective extract (AQMC) was prepared in additional dose of 50 and 500 mg/kg, and then subjected to the same liver toxicity test in addition to the endogenous antioxidant enzymes assay. Moreover, AQMC was also subjected to the phytochemical screening and HPLC analysis. Overall, from the results obtained: AQMC exerted significant (p< 0.05): (i) antioxidant activity when assessed using the DPPH, SOD and ORAC assays with high TPC detected; (ii) anti-inflammatory activity via LOX, but not XO pathway; (iii) hepatoprotective activity indicated by its ability to reverse the effect of PCM on the liver weight and liver/body weight ratio, the level of serum liver enzymes (ALT, AST, and ALP), and activity of several endogenous antioxidant enzymes (SOD and CAT). Phytochemicals analyses demonstrated the presence of several flavonoid-based bioactive compounds such as gallic acid and quercetin, which were reported to possess hepatoprotective activity. In conclusion, AQMC exerts hepatoprotective activity against the PCM-induced toxicity possibly by having a remarkable antioxidant potential and ability to activate the endogenous antioxidant system possibly via the synergistic action of its phytoconstituents.
Lung cancer, breast cancer and colorectal cancer are the most prevalent fatal types of cancers globally. Gallic acid (3,4,5-trihydroxybenzoic acid) is a bioactive compound found in plants and foods, such as white tea, witch hazel and it has been reported to possess anticancer, antioxidant and anti-inflammatory properties. In this study we have redesigned our previously reported anticancer nanocomposite formulation with improved drug loading based on iron oxide magnetite nanoparticles coated with polyethylene glycol and loaded with anticancer drug gallic acid (Fe₃O₄-PEG-GA). The in vitro release profile and percentage drug loading were found to be better than our previously reported formulation. The anticancer activity of pure gallic acid (GA), empty carrier (Fe₃O₄-PEG) nanocarrier and of anticancer nanocomposite (Fe₃O₄-PEG-GA) were screened against human lung cancer cells (A549), human breast cancer cells (MCF-7), human colon cancer cells (HT-29) and normal fibroblast cells (3T3) after incubation of 24, 48 and 72 h using (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) MTT assay. The designed formulation (Fe₃O₄-PEG-GA) showed better anticancer activity than free gallic acid (GA). The results of the in vitro studies are highly encouraging to conduct the in vivo studies.
The red sword bean (Canavalia gladiata) is an underutilized edible bean cultivated in China. It was previously found to have the highest content of antioxidant polyphenols among 42 edible beans, mainly gallic acid, and gallotannins in its red bean coat, an apparently unique characteristic among edible beans. In this study, the main phenolic compounds in red sword bean coats were further separated by Sephadex LH-20 column chromatography, and identified by LC-MS/MS. Furthermore, the FRAP and ABTS antioxidant activities and antibacterial activity (diameter of inhibition zone, DIZ) of main gallotannin-rich fractions were tested. Our results showed that gallotannins of red sword bean coats were mainly comprised of monogalloyl to hexagalloyl hexosides. Interestingly, tetragalloyl, pentagalloyl, and hexagalloyl hexosides were identified as the possible candidates responsible for the red color of the coats. On the other hand, gallotannin-rich fractions exhibited diverse antioxidant and antibacterial activities, and tetragalloyl hexoside overall had the highest free radical scavenging and antibacterial activities. The degree of galloylation did not completely explain the structure-function relationship of gallotannins isolated from red sword bean coats, as there should exist other factors affecting their bioactivities. In conclusion, red sword bean coats are excellent natural sources of gallotannins, and their gallotannin-rich extracts can be utilized as natural antioxidant and antibacterial agents with potential health benefits as well as application in food industry.
In this study, we investigated some bioactive compounds and pharmaceutical qualities of curry leaf (Murraya koenigii L.) extracts from three different locations in Malaysia. The highest TF and total phenolic (TP) contents were observed in the extracts from Kelantan (3.771 and 14.371 mg/g DW), followed by Selangor (3.146 and 12.272 mg/g DW) and Johor (2.801 and 12.02 mg/g DW), respectively. High quercetin (0.350 mg/g DW), catechin (0.325 mg/g DW), epicatechin (0.678 mg/g DW), naringin (0.203 mg/g DW), and myricetin (0.703 mg/g DW) levels were observed in the extracts from Kelantan, while the highest rutin content (0.082 mg/g DW) was detected in the leaves from Selangor. The curry leaf extract from Kelantan exhibited higher concentration of gallic acid (0.933 mg/g DW) than that from Selangor (0.904 mg/g DW) and Johor (0.813 mg/g DW). Among the studied samples, the ones from Kelantan exhibited the highest radical scavenging activity (DPPH, 66.41%) and ferric reduction activity potential (FRAP, 644.25 μ m of Fe(II)/g) followed by those from Selangor (60.237% and 598.37 μ m of Fe(II)/g) and Johor (50.76% and 563.42 μ m of Fe(II)/g), respectively. A preliminary screening showed that the curry leaf extracts from all the locations exhibited significant anticarcinogenic effects inhibiting the growth of breast cancer cell line (MDA-MB-231) and maximum inhibition of MDA-MB-231 cell was observed with the curry leaf extract from Kelantan. Based on these results, it is concluded that Malaysian curry leaf collected from the North (Kelantan) might be potential source of potent natural antioxidant and beneficial chemopreventive agents.
Phaleria macrocarpa, commonly known as Mahkota dewa is a medicinal plant that is indigenous to Indonesia and Malaysia. Extracts of P. macrocarpa have been used since years in traditional medicine that are evaluated scientifically as well. The extracts are reported for a number of valuable medicinal properties such as anti-cancer, anti-diabetic, anti-hyperlipidemic, anti-inflammatory, anti-bacterial, anti-fungal, anti-oxidant and vasorelaxant effect. The constituents isolated from different parts of P. macrocarpa include Phalerin, gallic acid, Icaricide C, magniferin, mahkoside A, dodecanoic acid, palmitic acid, des-acetylflavicordin-A, flavicordin-A, flavicordin-D, flavicordin-A glucoside, ethyl stearate, lignans, alkaloids andsaponins. The present review is an up-to-date summary of occurrence, botanical description, ethnopharmacology, bioactivity and toxicological studies related to P. macrocarpa.
Plant phenolics can inhibit, retard or reverse carcinogenesis, and may thus help prevent or treat cancer. Oil palm phenolics (OPP) previously showed anti-tumour activities in vivo via a cytostatic mechanism at 1,500 ppm gallic acid equivalent. Here, we report other possible molecular mechanisms by which this extract attenuates cancer, especially those concerning the immune response.
This study aimed to isolate a potent antiglucosidase and antioxidant fraction from Stenochlaena palustris. Extraction was performed with hexane, chloroform, ethyl acetate, methanol, and water. Antiglucosidase, 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging and ferric reducing antioxidant power (FRAP) assays found methanol extract (ME) to be the most active. Water fraction (WF) of ME was a stronger α-glucosidase inhibitor (EC50 2.9 μg/mL) than quercetin, with weak antiamylase activity. WF was a competitive α-glucosidase inhibitor. DPPH scavenging activity of WF (EC50 7.7 μg/mL) was weaker than quercetin. WF (EC50 364 μg/mL) was a stronger hydrogen peroxide scavenger than gallic acid (EC50 838 μg/mL) and was equally strong as quercetin in scavenging superoxide. WF possessed moderate copper chelating activity. WF was enriched in total phenolics (TP) and hydroxycinnamic acids (THC). TP correlated with antioxidant activity (R(2) > 0.76). Only THC correlated with antiglucosidase activity (R(2) = 0.86). Overall, WF demonstrated concurrent, potent antiglucosidase and antioxidant activities.
Induction of apoptosis is one of the targeted approaches in cancer therapies. As previously reported, natural products can induce apoptosis in in vitro cancer treatments. However, the underlying mechanisms of cancer cell death are poorly understood. The present study aimed to elucidate cell death mechanisms of gallic acid (GA) and methyl gallate (MG) from Quercus infectoria toward human cervical cancer cell lines (HeLa). The antiproliferative activity of GA and MG was characterised by an inhibitory concentration using 50% cell populations (IC50) by an MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assay. Cervical cancer cells, HeLa, were treated with GA and MG for 72 h and calculated for IC50 values. The IC50 concentration of both compounds was used to elucidate the apoptotic mechanism using acridine orange/propidium iodide (AO/PI) staining, cell cycle analysis, the Annexin-V FITC dual staining assay, apoptotic proteins expressions (p53, Bax and Bcl-2) and caspase activation analysis. GA and MG inhibited the growth of HeLa cells with an IC50 value of 10.00 ± 0.67 µg/mL and 11.00 ± 0.58 µg/mL, respectively. AO/PI staining revealed incremental apoptotic cells. Cell cycle analysis revealed an accumulation of cells at the sub-G1 phase. The Annexin-V FITC assay showed that cell populations shifted from the viable to apoptotic quadrant. Moreover, p53 and Bax were upregulated, whereas Bcl-2 was markedly downregulated. Activation of caspase 8 and 9 showed an ultimate apoptotic event in HeLa cells treated with GA and MG. In conclusion, GA and MG significantly inhibited HeLa cell growth through apoptosis induction by the activation of the cell death mechanism via extrinsic and extrinsic pathways.
In the current study, changes in secondary metabolite synthesis and the pharmaceutical quality of sabah snake grass leaves and buds were considered in relation to plant age (1 month, 6 months, and 1 year old). The activity of the enzyme chalcone synthase (CHS, EC 2.3.1.74) was measured, as it is a key enzyme for flavonoid production. Significant differences in total flavonoid (TF) production were observed between the three plant growth periods and the different plant parts. The highest contents of TF (6.32 mg/g dry weight [DW]) and total phenolic (TP) (18.21 mg/g DW) were recorded in 6-month-old buds. Among the flavonoids isolated in this study the most important ones based on concentration were from high to low as follows: catechin > quercetin > kaempferol > luteolin. Production of phenolic acids increased from 1 to 6 months, but after 6 months up to 1 year of age, they decreased significantly. The highest contents of caffeic acid (0.307 mg/g DW) and gallic acid (5.96 mg/g DW) were recorded in 1-year and 6-month-old buds, respectively. The lowest and highest activity of CHS was recorded in 1-month and 6-month-old buds with values of 3.6 and 9.5 nkat/mg protein, respectively. These results indicate that the increment in flavonoids and phenolic acids in 6-month-old buds can be attributed to an increase in CHS activity. The highest 1,1-diphenyl-2-picrylhydrazyl (DPPH) activity was observed in the extract of 1-year-old buds followed by 6-month-old buds, with 50% of free radical scavenging (IC50) values of 64.6 and 73.5 µg/mL, respectively. Interestingly, a ferric reducing antioxidant power (FRAP) assay showed a higher activity in 6-month-old buds (488 μM of Fe(II)/g) than in 1-year-old buds (453 μM of Fe(II)/g), in contrast to the DPPH result. Significant correlations (p < 0.05) were observed between CHS enzyme activity and FRAP activity, TF, catechin, and kaempferol content. Extracts of 6-month-old bud exhibited a significant in vitro anticancer activity against HeLa cancer cells with IC50 value of 56.8 µg/mL. These results indicate that early harvesting of snake grass (6-month-old) may yield increased concentrations of secondary metabolites, which are potent antioxidant compounds.