METHODS: An Agilent 1200 series high-performance liquid chromatography (HPLC) unit using a diode-array detector (DAD) has been employed and optimized to detect IPTS in cosmetic products. For the separation, a reverse-phase Hypersil Gold C8 column (5 μm, 4.6 mm i.d. 250 mm) 5 mM tetrabutylammonium phosphate buffer 50 : 50, (v/v) solution in acetonitrile as mobile phase, in isocratic mode and a flow rate of 0.8 mL min(-1) were used. A second method using a gas chromatography/mass selective detector GC-MSD was also developed to confirm the IPTS identity in the cosmetic products.
RESULTS: Recoveries of IPTS from cosmetic matrices such as a lotion, cleansing milk and a cream ranged from 94.0% to 101.1% with <5% relative standard deviation (%RSD) showing good accuracy and repeatability of the method. The six-point calibration curves (determined over the range 0.5-50 μg mL(-1) ) have a correlation coefficient of 0.9999 (based on HPLC peak area) and 0.9998 (based on HPLC peak height). The intra- and interday precisions (measured by the %RSD) of the method were <2% and <5%, respectively, indicating that the developed method is reliable, precise and reproducible. The detection and quantification limit of the method were found to be 0.5 μg mL(-1) and 1.6 μg mL(-1) , respectively. Analyses of 83 commercial cosmetics showed no presence of IPTS.
CONCLUSIONS: The validation data indicated that this method was suitable for the quantitative analysis of IPTS in commercial cosmetics. This method is applicable for analyses of trace levels of IPTS in cosmetics and has the advantage of using only simple sample preparation steps.
METHODS: Body composition, bone mineral density (BMD), and bone mineral content (BMC) at the lumbar spine (LS) and total body (TB) were assessed using dual-energy X-ray absorptiometry (DXA). Calcium intake was assessed using 1-week diet history, MET (metabolic equivalent of task) score using cPAQ physical activity questionnaire, and serum 25(OH) vitamin D using LC-MS/MS.
RESULTS: The mean calcium intake was 349 ± 180 mg/day and mean serum 25(OH)D level was 43.9 ± 14.5 nmol/L. In boys, lean mass (LM) was a significant predictor of LSBMC (β = 0.539, p mass (FM) (β = 0.261, p = 0.034) and physical activity measured as MET scores (β = 0.163, p = 0.026) were significant predictors of TBBMD in boys. Among girls, LM was also a significant predictor of LSBMC (β = 0.620, p