Displaying publications 41 - 60 of 2091 in total

Abstract:
Sort:
  1. Abu N, Mohamed NE, Yeap SK, Lim KL, Akhtar MN, Zulfadli AJ, et al.
    Drug Des Devel Ther, 2015;9:1401-17.
    PMID: 25834398 DOI: 10.2147/DDDT.S67976
    Flavokawain B (FKB) is a naturally occurring chalcone that can be isolated through the root extracts of the kava-kava plant (Piper methysticum). It can also be synthesized chemically to increase the yield. This compound is a promising candidate as a biological agent, as it is reported to be involved in a wide range of biological activities. Furthermore, FKB was reported to have antitumorigenic effects in several cancer cell lines in vitro. However, the in vivo antitumor effects of FKB have not been reported on yet. Breast cancer is one of the major causes of cancer-related deaths in the world today. Any potential treatment should not only impede the growth of the tumor, but also modulate the immune system efficiently and inhibit the formation of secondary tumors. As presented in our study, FKB induced apoptosis in 4T1 tumors in vivo, as evidenced by the terminal deoxynucleotidyl transferase dUTP nick end labeling and hematoxylin and eosin staining of the tumor. FKB also regulated the immune system by increasing both helper and cytolytic T-cell and natural killer cell populations. In addition, FKB also enhanced the levels of interleukin 2 and interferon gamma but suppressed interleukin 1B. Apart from that, FKB was also found to inhibit metastasis, as evaluated by clonogenic assay, bone marrow smearing assay, real-time polymerase chain reaction, Western blot, and proteome profiler analysis. All in all, FKB may serve as a promising anticancer agent, especially in treating breast cancer.
    Matched MeSH terms: Mice, Inbred BALB C; Mice
  2. Abu N, Zamberi NR, Yeap SK, Nordin N, Mohamad NE, Romli MF, et al.
    BMC Complement Altern Med, 2018 Jan 27;18(1):31.
    PMID: 29374471 DOI: 10.1186/s12906-018-2102-3
    BACKGROUND: Morinda citrifolia L. that was reported with immunomodulating and cytotoxic effects has been traditionally used to treat multiple illnesses including cancer. An anthraquinone derived from fruits of Morinda citrifolia L., nordamnacanthal, is a promising agent possessing several in vitro biological activities. However, the in vivo anti-tumor effects and the safety profile of nordamnacanthal are yet to be evaluated.

    METHODS: In vitro cytotoxicity of nordamnacanthal was tested using MTT, cell cycle and Annexin V/PI assays on human MCF-7 and MDA-MB231 breast cancer cells. Mice were orally fed with nordamnacanthal daily for 28 days for oral subchronic toxicity study. Then, the in vivo anti-tumor effect was evaluated on 4T1 murine cancer cells-challenged mice. Changes of tumor size and immune parameters were evaluated on the untreated and nordamnacanthal treated mice.

    RESULTS: Nordamnacanthal was found to possess cytotoxic effects on MDA-MB231, MCF-7 and 4T1 cells in vitro. Moreover, based on the cell cycle and Annexin V results, nordamnacanthal managed to induce cell death in both MDA-MB231 and MCF-7 cells. Additionally, no mortality, signs of toxicity and changes of serum liver profile were observed in nordamnacanthal treated mice in the subchronic toxicity study. Furthermore, 50 mg/kg body weight of nordamncanthal successfully delayed the progression of 4T1 tumors in Balb/C mice after 28 days of treatment. Treatment with nordamnacanthal was also able to increase tumor immunity as evidenced by the immunophenotyping of the spleen and YAC-1 cytotoxicity assays.

    CONCLUSION: Nordamnacanthal managed to inhibit the growth and induce cell death in MDA-MB231 and MCF-7 cell lines in vitro and cease the tumor progression of 4T1 cells in vivo. Overall, nordamnacanthal holds interesting anti-cancer properties that can be further explored.

    Matched MeSH terms: Mice, Inbred BALB C; Mice
  3. Abudula T, Gauthaman K, Mostafavi A, Alshahrie A, Salah N, Morganti P, et al.
    Sci Rep, 2020 11 24;10(1):20428.
    PMID: 33235239 DOI: 10.1038/s41598-020-76971-w
    Non-healing wounds have placed an enormous stress on both patients and healthcare systems worldwide. Severe complications induced by these wounds can lead to limb amputation or even death and urgently require more effective treatments. Electrospun scaffolds have great potential for improving wound healing treatments by providing controlled drug delivery. Previously, we developed fibrous scaffolds from complex carbohydrate polymers [i.e. chitin-lignin (CL) gels]. However, their application was limited by solubility and undesirable burst drug release. Here, a coaxial electrospinning is applied to encapsulate the CL gels with polycaprolactone (PCL). Presence of a PCL shell layer thus provides longer shelf-life for the CL gels in a wet environment and sustainable drug release. Antibiotics loaded into core-shell fibrous platform effectively inhibit both gram-positive and -negative bacteria without inducting observable cytotoxicity. Therefore, PCL coated CL fibrous gel platforms appear to be good candidates for controlled drug release based wound dressing applications.
    Matched MeSH terms: Mice
  4. Achoui M, Heyninck K, Looi CY, Mustafa AM, Haegeman G, Mustafa MR
    Drug Des Devel Ther, 2014;8:1993-2007.
    PMID: 25349474 DOI: 10.2147/DDDT.S68659
    The terpenoid 17-O-acetylacuminolide (AA) was shown to inhibit the production of several inflammatory mediators. However, the mechanisms by which this compound elicited its anti-inflammatory activity remain to be elucidated. In this study, we analyzed the effects of AA on inflammatory gene expression in two different cell types with primordial importance in the inflammatory processes - endothelial cells and macrophages. In human umbilical vein endothelial cells, AA inhibited the expression of inflammatory proteins including the adhesion molecules intercellular adhesion molecule 1; vascular cell adhesion molecule 1; and E-selectin, as well as the release of the chemokine interleukin-8. Additionally, AA hindered the formation of capillary-like tubes in an in vitro model of angiogenesis. AA's effects in endothelial cells can be attributed at least in part to AA's inhibition of tumor necrosis factor alpha-induced nuclear factor of kappa light polypeptide gene enhancer in B-cells (NF-κB)'s translocation. Also, in lipopolysaccharide-stimulated macrophage-like RAW264.7 cells, AA was able to downregulate the expression of the genes cyclooxygenase 2, inducible nitric oxide synthase, interleukin-6, and chemokine (C-C motif) ligand 2. Moreover, AA inhibited the phosphorylation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor-alpha (IκBα), IκB kinase (IKK), and the mitogen-activated protein kinases JNK, ERK, and p38. In conclusion, the present results further support the anti-inflammatory potential of AA in different models of inflammation.
    Matched MeSH terms: Mice
  5. Achoui M, Appleton D, Abdulla MA, Awang K, Mohd MA, Mustafa MR
    PLoS One, 2010;5(12):e15105.
    PMID: 21152019 DOI: 10.1371/journal.pone.0015105
    17-O-acetylacuminolide (AA), a diterpenoid labdane, was isolated for the first time from the plant species Neouvaria foetida. The anti-inflammatory effects of this compound were studied both in vitro and in vivo.
    Matched MeSH terms: Mice
  6. Adam A, Marzuki A, Ngah WZ, Top GM
    Pharmacol. Toxicol., 1996 Dec;79(6):334-9.
    PMID: 9000262
    The hepatic and pulmonary effects of nitrofurantoin (40 mg/kg, intraperitoneally) were determined at 4 and 24 hr following its administration in mice fed for 10 weeks with a vitamin E sufficient, deficient or enriched diet. Liver glutathione (GSH) was reduced by nitrofurantoin at 4 hr but was unchanged 20 hr later. Nitrofurantoin did not affect liver glutathione peroxidase, glutathione reductase or superoxide dismutase activities. Liver catalase activities were decreased by nitrofurantoin at 4 hr. Lung GSH levels were increased whilst glutathione peroxidase activity was decreased at 4 and 24 hr. Lung glutathione reductase activity was reduced in certain groups. Nitrofurantoin did not affect lung superoxide dismutase, but catalase was decreased at 24 hr. Liver malondialdehyde levels were increased by nitrofurantoin in the vitamin E deficient group whilst lung malondialdehyde levels remained unchanged. Both liver and lung malondialdehyde levels were unaffected by vitamin E supplementation when compared to the vitamin E-sufficient group. These results suggest that nitrofurantoin (40 mg/kg) was deleterious to the liver and lung. Nitrofurantoin-induced lipid peroxidation was seen in vitamin E deficiency but an increase in dietary vitamin E content did not provide additional protection compared to the recommended daily allowance. The antioxidant activities of alpha-tocopherol and gamma-enriched tocotrienol were similar.
    Matched MeSH terms: Mice
  7. Adam SH, Giribabu N, Bakar NMA, Salleh N
    Biomed Pharmacother, 2017 Dec;96:716-726.
    PMID: 29040959 DOI: 10.1016/j.biopha.2017.10.042
    Marontades pumilum is claimed to have beneficial effects in the treatment of diabetes mellitus (DM), however the underlying mechanisms were not fully identified. In this study, we hypothesized that M. pumilum could help to enhance cellular glucose uptake and reduces pancreatic complications, which contributed towards its beneficial effects in DM.

    METHODS: Two parameters were measured (i) rate of glucose uptake by 3T3-L1 adipocyte cells in-vitro (ii) degree of pancreatic destruction in streptozotocin-nicotinamide induced male diabetic rats receiving M. pumilum aqueous extract (M.P) (250 and 500mg/kg/day) as reflected by levels of pancreatic oxidative stress, inflammation and apoptosis. In the meantime, phyto-chemical compounds in M.P were also identified by using LC-MS.

    RESULTS: M.P was found able to enhance glucose uptake by 3T3-L1 adipocyte cells in-vitro while its administration to the male diabetic rats causes decreased in the fasting blood glucose (FBG), glycated haemoglobin (HbA1c), total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL) levels but causes increased in insulin and high-density lipoprotein (HDL) levels, to near normal. Levels of oxidative stress in the pancreas as reflected by levels of lipid peroxidation product (LPO) decreased while levels of anti-oxidantive enzymes (SOD, CAT and GPx) in pancreas increased. Additionally, levels of inflammation as reflected by NF-κB p65, Ikkβ and TNF-α levels decreased while apoptosis levels as reflected by caspase-9 and Bax levels decreased. Anti-apoptosis marker, Bcl-2 levels in pancreas increased.

    CONCLUSIONS: The ability of M.P to enhance glucose uptake and reduces pancreatic complications could account for its beneficial effects in treating DM.

    Matched MeSH terms: Mice
  8. Adams SC, Broom AK, Sammels LM, Hartnett AC, Howard MJ, Coelen RJ, et al.
    Virology, 1995 Jan 10;206(1):49-56.
    PMID: 7530394
    Previous studies have found Kunjin (KUN) virus isolates from within Australia to be genetically homogenous and that the envelope protein of the type strain (MRM61C) was unglycosylated and lacked a potential glycosylation site. We investigated the extent of antigenic variation between KUN virus isolates from Australia and Sarawak using an immunoperoxidase assay and a panel of six monoclonal antibodies. The glycosylation status of the E protein of each virus was also determined by N glycosidase F (PNGase F) digestion and limited sequence analysis. The results showed that KUN viruses isolated within Australia oscillated between three antigenic types defined by two epitopes whose expression was influenced by passage history and host cell type. In contrast an isolate from Sarawak formed a stable antigenic type that was not influenced by passage history and was distinct from all Australian isolates. PNGase F digestions of KUN isolates indicated that 19 of the 33 viruses possessed a glycosylated E protein. Nucleotide sequence of the 5' third of the E gene of selected KUN isolates revealed that a single base change in PNGase F sensitive strains changed the tripeptide N-Y-F (amino acids 154-156 of the published sequence) to the potential glycosylation site N-Y-S. Further analysis revealed that passage history also had a significant influence on glycosylation.
    Matched MeSH terms: Mice, Inbred BALB C; Mice
  9. Aftab MF, Afridi SK, Mughal UR, Karim A, Haleem DJ, Kabir N, et al.
    J. Chem. Neuroanat., 2017 04;81:1-9.
    PMID: 28093241 DOI: 10.1016/j.jchemneu.2017.01.001
    Diabetes is associated with neurodegeneration. Glycation ensues in diabetes and glycated proteins cause insulin resistance in brain resulting in amyloid plaques and NFTs. Also glycation enhances gliosis by promoting neuroinflammation. Currently there is no therapy available to target neurodegenration in brain therefore, development of new therapy that offers neuroprotection is critical. The objective of this study was to evaluate mechanistic effect of isatin derivative URM-II-81, an anti-glycation agent for improvement of insulin action in brain and inhibition of neurodegenration. Methylglyoxal induced stress was inhibited by treatment with URM-II-81. Also, Ser473 and Ser9 phosphorylation of Akt and GSK-3β respectively were restored by URM-II-81. Effect of URM-II-81 on axonal integrity was studied by differentiating Neuro2A using retinoic acid. URM-II-81 restored axonal length in MGO treated cells. Its effects were also studied in high fat and low dose streptozotocin induced diabetic mice where it reduced RBG levels and inhibited glycative stress by reducing HbA1c. URM-II-81 treatment also showed inhibition of gliosis in hippocampus. Histological analysis showed reduced NFTs in CA3 hippocampal region and restoration of insulin signaling in hippocampii of diabetic mice. Our findings suggest that URM-II-81 can be developed as a new therapeutic agent for treatment of neurodegenration.
    Matched MeSH terms: Mice, Inbred BALB C; Mice
  10. Agarwal R, Iezhitsa I
    Mol Aspects Med, 2023 Dec;94:101228.
    PMID: 38016252 DOI: 10.1016/j.mam.2023.101228
    Genetic rodent models are widely used in glaucoma related research. With vast amount of information revealed by human studies about genetic correlations with glaucoma, use of these models is relevant and required. In this review, we discuss the glaucoma endophenotypes and importance of their representation in an experimental animal model. Mice and rats are the most popular animal species used as genetic models due to ease of genetic manipulations in these animal species as well as the availability of their genomic information. With technological advances, induction of glaucoma related genetic mutations commonly observed in human is possible to achieve in rodents in a desirable manner. This approach helps to study the pathobiology of the disease process with the background of genetic abnormalities, reveals potential therapeutic targets and gives an opportunity to test newer therapeutic options. Various genetic manipulation leading to appearance of human relevant endophenotypes in rodents indicate their relevance in glaucoma pathology and the utility of these rodent models for exploring various aspects of the disease related to targeted mutation. The molecular pathways involved in the pathophysiology of glaucoma leading to elevated intraocular pressure and the disease hallmark, apoptosis of retinal ganglion cells and optic nerve degeneration, have been extensively explored in genetic rodent models. In this review, we discuss the consequences of various genetic manipulations based on the primary site of pathology in the anterior or the posterior segment. We discuss how these genetic manipulations produce features in rodents that can be considered a close representation of disease phenotype in human. We also highlight several molecular mechanisms revealed by using genetic rodent models of glaucoma including those involved in increased aqueous outflow resistance, loss of retinal ganglion cells and optic neuropathy. Lastly, we discuss the limitations of the use of genetic rodent models in glaucoma related research.
    Matched MeSH terms: Mice
  11. Ahamed MB, Aisha AF, Nassar ZD, Siddiqui JM, Ismail Z, Omari SM, et al.
    Nutr Cancer, 2012;64(1):89-99.
    PMID: 22136553 DOI: 10.1080/01635581.2012.630160
    Cat's whiskers (Orthosiphon stamineus) is commonly used as Java tea to treat kidney stones including a variety of angiogenesis-dependent diseases such as tumorous edema, rheumatism, diabetic blindness, and obesity. In the present study, antitumor potential of standardized 50% ethanol extract of O. stamineus leaves (EOS) was evaluated against colorectal tumor in athymic mice and antiangiogenic efficacy of EOS was investigated in human umbilical vein endothelial cells (HUVEC). EOS at 100 mg/kg caused 47.62 ± 6.4% suppression in tumor growth, while at 200 mg/kg it caused 83.39 ± 4.1% tumor regression. Tumor histology revealed significant reduction in extent of vascularization. Enzyme-linked immunosorbent assay showed EOS (200 mg/kg) significantly reduced the vascular endothelial growth factor (VEGF) level in vitro (211 ± 0.26 pg/ml cell lysate) as well as in vivo (90.9 ± 2 pg/g tissue homogenate) when compared to the control (378 ± 5 and 135.5 ± 4 pg, respectively). However, EOS was found to be noncytotoxic to colon cancer and endothelial cells. In vitro, EOS significantly inhibited the migration and tube formation of human umbilical vein endothelial cells (HUVECs). EOS suppressed VEGF-induced phosphorylation of VEGF receptor-2 in HUVECs. High performance liquid chromatography (HPLC) analysis of EOS showed high rosmarinic acid contents, whereas phytochemical analysis revealed high protein and phenolic contents. These results demonstrated that the antitumor activity of EOS may be due to its VEGF-targeted antiangiogenicity.
    Matched MeSH terms: Mice, Nude; Mice
  12. Ahmad Alwi NA, Lim SM, Mani V, Ramasamy K
    J Diet Suppl, 2023;20(5):717-734.
    PMID: 35876040 DOI: 10.1080/19390211.2022.2103608
    This study explored mechanisms underpinning enhanced memory in amyloid precursor protein (APP) transgenic mice (male; 10-12 months; n = 6/group) supplemented with Lactobacillus plantarum LAB12 (LAB12)/Lactobacillus casei Shirota (LcS). Morris Water Maze test was performed before brains were harvested for gene expression and biochemical studies. LAB-supplemented mice exhibited reduced escape latency and distance but significant increased time spent in platform zone. This was associated with downregulated beta-site APP cleaving enzyme-1 (BACE1) mRNA and significant reduced nitric oxide in brains. LAB12 also significantly increased glutathione. The LAB-enhanced memory is strain-dependent and could be mediated, in part, through amyloidogenic pathway and anti-oxidant/oxidative stress interplay.
    Matched MeSH terms: Mice, Transgenic; Mice
  13. Ahmad B, Friar EP, Taylor E, Vohra MS, Serpell CJ, Garrett MD, et al.
    Eur J Pharmacol, 2023 Jan 05;938:175445.
    PMID: 36473593 DOI: 10.1016/j.ejphar.2022.175445
    In this study, the anti-obesity effects of 5,7,3',4',5-pentamethoxyflavone (PMF) and 6,2',4'-trimethoxyflavone (TMF) were evaluated through two distinct mechanisms of action: inhibition of crude porcine pancreatic lipase (PL), and inhibition of adipogenesis in 3T3-L1 pre-adipocytes. Both flavones show dose dependent, competitive inhibition of PL activity. Molecular docking studies revealed binding of the flavones to the active site of PL. In 3T3-L1 adipocytes, both flavones reduced the accumulation of lipids and triglycerides. PMF and TMF also lowered the expression of adipogenic and lipogenic genes. They both reduced the expression of peroxisome proliferator-activated receptor-gamma (PPAR-γ), CCAAT/enhancer-binding protein α and β (C/EBP α and β), sterol regulatory element-binding protein 1 (SREBF 1), fatty acid synthase (FASN), adipocyte binding protein 2 (aP2), and leptin gene. In addition, these flavones enhanced adiponectin mRNA expression, increased lipolysis and enhanced the expression of lipolytic genes: adipose triglycerides lipase (ATGL), hormone sensitive lipase (HSL) and monoglycerides lipase (MAGL) in mature 3T3-L1 adipocytes. Overall, PMF was seen to be a more potent inhibitor of both PL activity and adipogenesis versus TMF. These results suggest that PMF and TMF possess anti-obesity activities and can be further evaluated for their anti-obesity effects.
    Matched MeSH terms: Mice
  14. Ahmad B, Friar EP, Vohra MS, Khan N, Serpell CJ, Garrett MD, et al.
    Chem Biol Interact, 2023 Jul 01;379:110503.
    PMID: 37084996 DOI: 10.1016/j.cbi.2023.110503
    Hydroxylated polymethoxyflavones (HPMFs) have been shown to possess various anti-disease effects, including against obesity. This study investigates the anti-obesity effects of HPMFs in further detail, aiming to gain understanding of their mechanism of action in this context. The current study demonstrates that two HPMFs; 3'-hydroxy-5,7,4',5'-tetramethoxyflavone (3'OH-TetMF) and 4'-hydroxy-5,7,3',5'-tetramethoxyflavone (4'OH-TetMF) possess anti-obesity effects. They both significantly reduced pancreatic lipase activity in a competitive manner as demonstrated by molecular docking and kinetic studies. In cell studies, it was revealed that both of the HPMFs suppress differentiation of 3T3-L1 mouse embryonic fibroblast cells during the early stages of adipogenesis. They also reduced expression of key adipogenic and lipogenic marker genes, namely peroxisome proliferator-activated receptor-gamma (PPARγ), CCAAT/enhancer-binding protein α and β (C/EBP α and β), adipocyte binding protein 2 (aP2), fatty acid synthase (FASN), and sterol regulatory element-binding protein 1 (SREBF 1). They also enhanced the expression of cell cycle genes, i.e., cyclin D1 (CCND1) and C-Myc, and reduced cyclin A2 expression. When further investigated, it was also observed that these HPMFs accelerate lipid breakdown (lipolysis) and enhance lipolytic genes expression. Moreover, they also reduced the secretion of proteins (adipokines), including pro-inflammatory cytokines, from mature adipocytes. Taken together, this study concludes that these HPMFs have anti-obesity effects, which are worthy of further investigation.
    Matched MeSH terms: Mice
  15. Ahmad H, Ong SQ, Tan EH
    Int J Insect Sci, 2019;11:1179543318823533.
    PMID: 30675104 DOI: 10.1177/1179543318823533
    Megaselia scalaris (Loew) is one of the best-known diets for the swiftlet. Previous studies have addressed the problem of some mass rearing conditions for this insect; unfortunately, the details of the nutritional composition of the life stages and cost of the breeding materials were insufficiently reported, even though this information is crucial for farming the edible-nest swiftlet. We aimed to investigate the nutritional composition of the life stages of M scalaris on a cost basis using 3 common commercial breeding materials: chicken pellets (CPs), fish pellets (FPs), and mouse pellets (MPs). Modified Association of Official Analytical Chemists (AOAC) proximate and mineral analyses were carried out on the insect's third instar larvae, pupal, and adult stages to determine the nutritional composition. Regardless of the breeding materials, the adult stage of M scalaris had significantly higher crude protein than the other stages; the pupae were rich in calcium, which is required for egg production; and the third instar larvae had the highest amount of crude fat compared with the other stages. Regarding the energy content, there were no significant differences among the stages according to the breeding materials. In terms of nutritional cost, CP was the most economic breeding material and generated the highest amount of nutrients per US dollar (US $). Different life stages of M scalaris were used by the swiftlets by supplying the required nutrients, and future studies should focus on effective diet feeding methods.
    Matched MeSH terms: Mice
  16. Ahmad Hairi H, Jamal JA, Aladdin NA, Husain K, Mohd Sofi NS, Mohamed N, et al.
    Molecules, 2018 Jul 11;23(7).
    PMID: 29997309 DOI: 10.3390/molecules23071686
    Phytoestrogens have attracted considerable attention for their potential in the prevention of postmenopausal osteoporosis. Recently, a phytoestrogen-rich herbal plant, Marantodes pumilum var. alata (Blume) Kuntze was reported to protect against bone loss in ovariectomized rat. However, the bioactive compound responsible for these effects and the underlying mechanism were not known. Through bioassay-guided isolation, demethylbelamcandaquinone B (Dmcq B) was isolated and identified from Marantodes pumilum var. alata leaf extract. In terms of its bone anabolic effects, Dmcq B was at par with 17β-estradiol (E2), in promoting the proliferation, differentiation and mineralization of osteoblast cells. Dmcq-B increased early differentiation markers, collagen content and enzymatic ALP activity. It was demonstrated to regulate BMP2 signaling pathway which further activated the transcription factor, osterix. Subsequently, Dmcq B was able to increase the osteocalcin expression which promoted matrix mineralization as evidenced by the increase in calcium deposition. Dmcq B also reduced the protein level of receptor activator of NF-κβ ligand (RANKL) and promoted osteoprotegerin (OPG) protein expression by osteoblast cells, therefore hastening bone formation rate by decreasing RANKL/OPG ratio. Moreover, Dmcq B was able to increase ER expression, postulating its phytoestrogen property. As the conclusion, Dmcq B is the active compound isolated from Marantodes pumilum var. alata leaves, regulating osteoanabolic activities potentially through the BMP2 and ER signaling pathways.
    Matched MeSH terms: Mice
  17. Ahmad M, Suhaimi SN, Chu TL, Abdul Aziz N, Mohd Kornain NK, Samiulla DS, et al.
    PLoS One, 2018;13(1):e0191295.
    PMID: 29329342 DOI: 10.1371/journal.pone.0191295
    Copper(II) ternary complex, [Cu(phen)(C-dmg)(H2O)]NO3 was evaluated against a panel of cell lines, tested for in vivo efficacy in nasopharyngeal carcinoma xenograft models as well as for toxicity in NOD scid gamma mice. The Cu(II) complex displayed broad spectrum cytotoxicity against multiple cancer types, including lung, colon, central nervous system, melanoma, ovarian, and prostate cancer cell lines in the NCI-60 panel. The Cu(II) complex did not cause significant induction of cytochrome P450 (CYP) 3A and 1A enzymes but moderately inhibited CYP isoforms 1A2, 2C9, 2C19, 2D6, 2B6, 2C8 and 3A4. The complex significantly inhibited tumor growth in nasopharyngeal carcinoma xenograft bearing mice models at doses which were well tolerated without causing significant or permanent toxic side effects. However, higher doses which resulted in better inhibition of tumor growth also resulted in toxicity.
    Matched MeSH terms: Mice
  18. Ahmad MH, Zezi AU, Anafi SB, Alhassan Z, Mohammed M, Danraka RN
    Data Brief, 2021 Jun;36:107155.
    PMID: 34041327 DOI: 10.1016/j.dib.2021.107155
    This article describes the dataset for the elucidation of the possible mechanisms of antidiarrhoeal actions of methanol leaves extract of Combretum hypopilinum (Diels) Combretaceae in mice. The plant has been used in traditional medicine to treat diarrhoea in Nigeria and other African countries. We introduce the data for the antidiarrhoeal activity of the methanol leaf extract of Combretum hypopilinum at 1,000 mg/kg investigated using charcoal meal test in mice with loperamide (5 mg/kg) as the standard antidiarrhoeal agent. To elucidate the possible mechanisms of its antidiarrhoeal action, naloxone (2 mg/kg), prazosin (1 mg/kg), yohimbine (2 mg/kg), propranolol (1 mg/kg), pilocarpine (1 mg/kg) and isosorbide dinitrate (150 mg/kg) were separately administered to different groups of mice 30 minutes before administration of the extract. Each mouse was dissected using dissecting set, and the small intestine was immediately removed from pylorus to caecum, placed lengthwise on moist filter paper and measured the distance travelled by charcoal relative to the length of the intestine using a calibrated ruler in centimetre. Besides, the peristaltic index and inhibition of charcoal movement of each animal were calculated and recorded. The methods for the data collection is similar to the one used to investigate the possible pathways involved in the antidiarrhoeal action of Combretum hypopilinum in mice in the research article by Ahmad et al. (2020) "Mechanisms of Antidiarrhoeal Activity of Methanol Leaf Extract of Combretum hypopilinum Diels (Combretaceae): Involvement of Opioidergic and (α1 and β)-Adrenergic Pathways" (https://doi.org/10.1016/j.jep.2020.113750) [1]. Therefore, this datasets could form a basis for in-depth research to elucidate further the pharmacological properties of the plant Combretum hypopilinum and its bioactive compounds to develop standardized herbal product and novel compound for management of diarrhoea. It could also be instrumental for evaluating the plant's pharmacological potentials using other computational-based and artificial intelligence approaches, including predictive modelling and simulation.
    Matched MeSH terms: Mice
  19. Ahmad MH, Zezi AU, Anafi SB, Alhassan Z, Mohammed M, Danraka RN
    J Ethnopharmacol, 2021 Apr 06;269:113750.
    PMID: 33359856 DOI: 10.1016/j.jep.2020.113750
    ETHNOPHARMACOLOGICAL RELEVANCE: The plant Combretum hypopilinum Diels (Combretaceae) is used in traditional medicine for the treatment of diarrhoea and other diseases in Africa. Previously, the antidiarrhoeal activity of its methanol leaf extract was reported. However, the mechanism(s) responsible for this activity is yet to be evaluated.

    AIM OF THE STUDY: This study aimed to elucidate the possible mechanism(s) of antidiarrhoeal activity of methanol leaf extract of Combretum hypopilinum (MECH) in mice.

    MATERIALS AND METHODS: Phytochemical screening and acute toxicity study were conducted according to standard methods. Adult mice were orally (p.o) administered distilled water (10 ml/kg), MECH (1000 mg/kg) and loperamide (5 mg/kg). The probable mechanisms of antidiarrhoeal activity of MECH were investigated following pretreatment with naloxone (2 mg/kg, subcutaneously), prazosin (1 mg/kg, s.c), yohimbine (2 mg/kg, intraperitoneally), propranolol (1 mg/kg, i.p), pilocarpine (1 mg/kg, s.c) and isosorbide dinitrate (150 mg/kg, p.o) 30 min before administration of MECH (1000 mg/kg). The mice were then subjected to castor oil-induced intestinal motility test.

    RESULTS: The oral median lethal dose (LD50) of MECH was found to be higher than 5000 mg/kg. There were significant (p mice treated with the MECH (1000 mg/kg) and loperamide (5 mg/kg). The pretreatment of the mice with naloxone, prazosin and propranolol each significantly (p<0.05) reversed the antidiarrhoeal activity produced by MECH.

    CONCLUSION: The results obtained in this study suggest the probable involvement of opioidergic and (α1 and β)-adrenergic systems in the antidiarrhoeal activity of the methanol leaf extract of Combretum hypopilinum.

    Matched MeSH terms: Mice
  20. Ahmad N, Samiulla DS, Teh BP, Zainol M, Zolkifli NA, Muhammad A, et al.
    Pharmaceutics, 2018 Jul 11;10(3).
    PMID: 29997335 DOI: 10.3390/pharmaceutics10030090
    Eurycoma longifolia is one of the commonly consumed herbal preparations and its major chemical compound, eurycomanone, has been described to have antimalarial, antipyretic, aphrodisiac, and cytotoxic activities. Today, the consumption of E. longifolia is popular through the incorporation of its extract in food items, most frequently in drinks such as tea and coffee. In the current study, the characterisation of the physicochemical and pharmacokinetic (PK) attributes of eurycomanone were conducted via a series of in vitro and in vivo studies in rats and mice. The solubility and chemical stability of eurycomanone under the conditions of the gastrointestinal tract environment were determined. The permeability of eurycomanone was investigated by determining its distribution coefficient in aqueous and organic environments and its permeability using the parallel artificial membrane permeability assay system and Caco-2 cultured cells. Eurycomanone's stability in plasma and its protein-binding ability were measured by using an equilibrium dialysis method. Its stability in liver microsomes across species (mice, rat, dog, monkey, and human) and rat liver hepatocytes was also investigated. Along with the PK evaluations of eurycomanone in mice and rats, the PK parameters for the Malaysian Standard (MS: 2409:201) standardised water extract of E. longifolia were also evaluated in rats. Both rodent models showed that eurycomanone in both the compound form and extract form had a half-life of 0.30 h. The differences in the bioavailability of eurycomanone in the compound form between the rats (11.8%) and mice (54.9%) suggests that the PK parameters cannot be directly extrapolated to humans. The results also suggest that eurycomanone is not readily absorbed across biological membranes. However, once absorbed, the compound is not easily metabolised (is stable), hence retaining its bioactive properties, which may be responsible for the various reported biological activities.
    Matched MeSH terms: Mice
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links