Displaying publications 41 - 60 of 129 in total

Abstract:
Sort:
  1. Gan CY, Etoh T, Hayashi M, Komiyama K, Kam TS
    J Nat Prod, 2010 Jun 25;73(6):1107-11.
    PMID: 20515042 DOI: 10.1021/np1001187
    Four new bisindole alkaloids of the Strychnos-Strychnos type, leucoridines A-D (1-4), were isolated from the stem-bark extract of Leuconotis griffithii. Alkaloids 1-4 showed moderate cytotoxicity against drug-sensitive and vincristine-resistant human KB cells.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/chemistry
  2. Gan CY, Robinson WT, Etoh T, Hayashi M, Komiyama K, Kam TS
    Org. Lett., 2009 Sep 3;11(17):3962-5.
    PMID: 19708704 DOI: 10.1021/ol9016172
    A cytotoxic bisindole alkaloid possessing an unprecedented structure constituted from the union of an eburnan half and a novel vinylquinoline alkaloid has been isolated from Leuconotis griffithii. The structure was established by analysis of the spectroscopic data and confirmed by X-ray diffraction analysis. A possible biogenetic pathway to the novel quinolinic coupling partner is presented from an Aspidosperma precursor.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/chemistry
  3. Lim SH, Mahmood K, Komiyama K, Kam TS
    J Nat Prod, 2008 Jun;71(6):1104-6.
    PMID: 18462006 DOI: 10.1021/np800123g
    A new cycloartane, monocarpinine (1), incorporating a fused tetrahydrofuranyl ring, and a cytotoxic tetracyclic lactam, monomarginine (2), were isolated from a stem bark extract of the Malayan species Monocarpia marginalis. The structures of these compounds were determined using NMR and MS analysis. Monomarginine (2) showed appreciable cytotoxicity toward human KB (both drug-sensitive and drug-resistant) and Jurkat cells.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/chemistry
  4. Lim KH, Hiraku O, Komiyama K, Kam TS
    J Nat Prod, 2008 Sep;71(9):1591-4.
    PMID: 18778099 DOI: 10.1021/np800435c
    Seven new indole alkaloids of the Aspidosperma type, jerantinines A-G (1-7), were isolated from a leaf extract of the Malayan Tabernaemontana corymbosa. The structures were established using NMR and MS analysis. Five of the alkaloids isolated and two derivatives (1-5, 8, 9) displayed pronounced in vitro cytotoxicity against human KB cells (IC50 < 1 microg/mL).
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/chemistry
  5. Subramaniam G, Hiraku O, Hayashi M, Koyano T, Komiyama K, Kam TS
    J Nat Prod, 2008 Jan;71(1):53-7.
    PMID: 18078327
    Ten new indole alkaloids of the aspidofractinine type, in addition to several recently reported indole alkaloids and 20 other known alkaloids, were obtained from the leaf and stem-bark extract of the Malayan Kopsia singapurensis, viz., kopsimalines A-E (1-5), kopsinicine (6), kopsofinone (7), and kopsiloscines H-J (8-10). The structures of these alkaloids were determined using NMR and MS analysis. Kopsimalines A (1), B (2), C (3), D (4), and E (5) and kopsiloscine J (10) were found to reverse multidrug-resistance in vincristine-resistant KB cells, with 1 showing the highest potency.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/chemistry
  6. Subramaniam G, Hiraku O, Hayashi M, Koyano T, Komiyama K, Kam TS
    J Nat Prod, 2007 Nov;70(11):1783-9.
    PMID: 17939738
    Eleven new indole alkaloids, in addition to the previously reported rhazinal (1), and 14 other known alkaloids, were obtained from the Malayan Kopsia singapurensis, viz., kopsiloscines A-F (2-7), 16-epikopsinine (8), kopsilongine- N-oxide (9), 16-epiakuammiline (10), aspidophylline A (11), and vincophylline (12). The structures of these alkaloids were determined using NMR and MS analyses. Rhazinal (1), rhazinilam (17), and rhazinicine (18) showed appreciable cytotoxicity toward drug-sensitive as well as vincristine-resistant KB cells, while kopsiloscines A (2), B (3), and D (5) and aspidophylline A (11) were found to reverse drug-resistance in drug-resistant KB cells.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/chemistry
  7. Lim KH, Hiraku O, Komiyama K, Koyano T, Hayashi M, Kam TS
    J Nat Prod, 2007 Aug;70(8):1302-7.
    PMID: 17665953
    Nine new indole alkaloids, rhazinoline (1), 19(S)-methoxytubotaiwine (2), 19(R)-methoxytubotaiwine (3), kopsamidine A (4), kopsamidine B (5), kopsinidine A (6), kopsinidine B (7), paucidactine C (8), and pericine N-oxide (9), in addition to several recently reported novel indoles and 34 other known ones, were obtained from the stem-bark extract of the Malayan Kopsia arborea. The structures were determined using NMR and MS analysis. Valparicine (12) showed pronounced cytotoxic effects against KB and Jurkat cells (IC(50) 13.0 and 0.91 microM, respectively).
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/chemistry
  8. Nge CE, Chong KW, Thomas NF, Lim SH, Low YY, Kam TS
    J Nat Prod, 2016 05 27;79(5):1388-99.
    PMID: 27077800 DOI: 10.1021/acs.jnatprod.6b00129
    Ten new indole alkaloids (1-10) comprising five ibogan, two aspidosperman, one vincamine, and two bisindole alkaloids, in addition to 32 known alkaloids, were isolated from the stem-bark extract of a Malayan Tabernaemontana corymbosa. The structures of these alkaloids were determined based on analysis of the NMR and MS data and, in five instances (1, 3, 5, 6, 8), confirmed by X-ray diffraction analysis. Two of the iboga alkaloids, conodusines B (2) and C (3), and the iboga-containing bisindole tabernamidine B (10) are notable for the presence of an α-substituted acetyl group at C-20 of the iboga carbon skeleton. The iboga alkaloid (+)-conodusine E (5) had MS and NMR data that were identical to those of (-)-ervatamine I, recently isolated from Ervatamia hainanensis. Establishment of the absolute configuration of (+)-conodusine E (5) was based on analysis of the ECD data, correlation with (-)-heyneanine, and X-ray analysis, which showed that (+)-5 belongs to the same enantiomeric series as exemplified by (-)-coronaridine. The configuration at C-20' of the previously reported Tabernaemontana bisindole alkaloid 19'-oxotabernamine (renamed tabernamidine B) required revision based on the present results. Several of the bisindoles showed pronounced in vitro growth inhibitory activity against drug-sensitive and vincristine-resistant KB cells.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/chemistry
  9. Lim JL, Sim KS, Yong KT, Loong BJ, Ting KN, Lim SH, et al.
    Phytochemistry, 2015 Sep;117:317-24.
    PMID: 26125941 DOI: 10.1016/j.phytochem.2015.06.024
    Four alkaloids comprising two vallesamine, one strychnan, and one pyranopyridine alkaloid, in addition to 32 other known alkaloids were isolated from two Malayan Alstonia species, Alstonia pneumatophora and Alstonia rostrata. The structures of these alkaloids were determined using NMR and MS analyses, and in one instance, confirmed by X-ray diffraction analysis. The nor-6,7-secovallesamine alkaloid, pneumatophorine, is notable for an unusual incorporation of a 3-ethylpyridine moiety in a monoterpenoid indole. The rhazinilam-type alkaloids (rhazinicine, nor-rhazinicine, rhazinal, and rhazinilam) showed strong cytotoxicity toward human KB, HCT-116, MDA-MB-231, and MRC-5 cells, while pneumatophorine, the uleine alkaloid undulifoline, and the strychnan alkaloids, N4-demethylalstogustine and echitamidine, induced concentration dependent relaxation in phenylephrine-precontracted rat aortic rings.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/chemistry
  10. Lim KH, Raja VJ, Bradshaw TD, Lim SH, Low YY, Kam TS
    J Nat Prod, 2015 May 22;78(5):1129-38.
    PMID: 25919190 DOI: 10.1021/acs.jnatprod.5b00117
    Six new indole alkaloids, viz., cononusine (1, a rare example of an iboga-pyrrolidone conjugate), ervaluteine (2), vincamajicine (3), tacamonidine (4), 6-oxoibogaine (5), and N(4)-chloromethylnorfluorocurarine chloride (6), and two new vobasinyl-iboga bisindole alkaloids, ervatensines A (7) and B (8), in addition to other known alkaloids, were isolated from the stem-bark extract of the Malayan Tabernaemontana corymbosa. The structures of these alkaloids were established on the basis of NMR and MS analyses and, in one instance (7), confirmed by X-ray diffraction analysis. Vincamajicine (3) showed appreciable activity in reversing multidrug resistance in vincristine-resistant KB cells (IC50 2.62 μM), while ervatensines A (7) and B (8) and two other known bisindoles displayed pronounced in vitro growth inhibitory activity against human KB cells (IC50 < 2 μM). Compounds 7 and 8 also showed good growth inhibitory activity against A549, MCF-7, MDA-468, HCT-116, and HT-29 cells (IC50 0.70-4.19 μM). Cell cycle and annexin V-FITC apoptosis assays indicated that compounds 7 and 8 inhibited proliferation of HCT-116 and MDA-468 cells, evoking apoptotic and necrotic cell death.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/chemistry
  11. Jamila N, Khairuddean M, Yaacob NS, Kamal NN, Osman H, Khan SN, et al.
    Bioorg Chem, 2014 Jun;54:60-7.
    PMID: 24813683 DOI: 10.1016/j.bioorg.2014.04.003
    Garcinia hombroniana (seashore mangosteen) in Malaysia is used to treat itching and as a protective medicine after child birth. This study was aimed to investigate the bioactive chemical constituents of the bark of G. hombroniana. Ethyl acetate and dichloromethane extracts of G. hombroniana yielded two new (1, 9) and thirteen known compounds which were characterized by the spectral techniques of NMR, UV, IR and EI/ESI-MS, and identified as; 2,3',4,5'-tetrahydroxy-6-methoxybenzophenone(1), 2,3',4,4'-tetrahydroxy-6-methoxybenzophenone (2), 2,3',4,6-tetrahydroxybenzophenone (3), 1,3,6,7-tetrahydroxyxanthone (4), 3,3',4',5,7-pentahydroxyflavone (5),3,3',5,5',7-pentahydroxyflavanone (6), 3,3',4',5,5',7-hexahydroxyflavone (7), 4',5,7-trihydroxyflavanone-7-rutinoside (8), 18(13→17)-abeo-3β-acetoxy-9α,13β-lanost-24E-en-26-oic acid (9), garcihombronane B (10), garcihombronane D (11), friedelan-3-one (12), lupeol (13), stigmasterol (14) and stigmasterol glucoside (15). In the in vitro cytotoxicity against MCF-7, DBTRG, U2OS and PC-3 cell lines, compounds 1 and 9 displayed good cytotoxic effects against DBTRG cancer cell lines. Compounds 1-8 were also found to possess significant antioxidant activities. Owing to these properties, this study can be further extended to explore more significant bioactive components of this plant.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/chemistry
  12. Poh Yen K, Stanslas J, Zhang T, Li H, Wang X, Kok Meng C, et al.
    Bioorg Med Chem, 2021 11 01;49:116442.
    PMID: 34600241 DOI: 10.1016/j.bmc.2021.116442
    Acquired paclitaxel (PTX) chemoresistance in triple-negative breast cancer (TNBC) can be inferred from the overexpression of toll-like receptor 4 (TLR4) and myeloid differentiation primary response 88 (MyD88) proteins and the activation of the TLR4/MyD88 cascading signalling pathway. Finding a new inhibitor that can attenuate the activation of this pathway is a novel strategy for reducing PTX chemoresistance. In this study, a series of small molecule compounds were synthesised and tested in combination with PTX against TNBC cells. The trimethoxy-substituted compound significantly decreased MyD88 overexpression and improved PTX activity in MDA-MB-231TLR4+ cells but not in HCCTLR4- cells. On the contrary, the trifluoromethyl-substituted compound with PTX synergistically improved the growth inhibition in both TNBC subtypes. The fluorescence titrations indicated that both compounds could bind with MD2 with good and comparable binding affinities. This was further supported by docking analysis, in which both compounds fit perfectly well and form some critical binding interactions with MD2, an essential lipid-binding accessory to TLR4 involved in activating the TLR-4/MyD88-dependent pathway.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/chemistry
  13. Kam TS, Subramaniam G, Sim KM, Yoganathan K, Koyano T, Toyoshima M, et al.
    Bioorg Med Chem Lett, 1998 Oct 06;8(19):2769-72.
    PMID: 9873619
    A series of indole alkaloids of the aspidofractinine-type was assessed for their potential in reversing MDR in vincristine-resistant KB cells. Of the compounds tested, kopsiflorine, kopsamine, pleiocarpine, 11-methoxykopsilongine, lahadinine A and N-methoxycarbonyl-11,12-methylenedioxy-delta 16,17-kopsinine were found to show appreciable activity.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/chemistry
  14. Khalivulla SI, Mohammed A, Sirajudeen KNS, Shaik MI, Ye W, Korivi M
    Curr Drug Metab, 2019;20(12):946-957.
    PMID: 31744445 DOI: 10.2174/1389200220666191118102616
    BACKGROUND: Typhonium is the largest genus in the Araceae family (~70 species), distributed in South Asia, Southeast Asia and Australia. Typhonium is well-known for its ethnopharmacological uses, and Southeast Asians consider it as an alternative medicine to treat cancer. This review elucidated the confirmed chemical structures of the isolated compounds of Typhonium and emphasized on their anticancer activities against various human cancer cells.

    METHODS: Among several species, Typhonium blumei, T. flagelliforme, T. divaricatum and T. giganteum were extensively studied due to the presence of a class of secondary metabolites. All the available reports on Typhonium were included and discussed in this article.

    RESULTS: Until now several groups of compounds, namely amino acids (1, 2), cinnamic acid (3), fatty acids (4-14), glycerol derivatives (15-18) and cerebrosides (19-34), flavonoids (35), hydantoins (36-38), lignin monomers (39-44), nucleobases (45-48), pheophorbides (49-52), phthalate (53), terpene and steroids (54-59) and vitamins (60, 61) were isolated and characterized from Typhonium. These phytochemicals were investigated for their anticancer properties, and results confirmed the promising growth inhibitory effect and anticancer activities against human lung, breast, prostate and colon cancer cells. The anticancer activity of these compounds appears to be mediated through the induction of apoptotic cell death. These phytochemicals further reported to exhibit other pharmacological efficacies, including anti-inflammatory, antioxidant, antiviral, anti-allergic, neuroprotective and hepato-protective properties.

    CONCLUSION: This is the first review to summarize the anticancer properties of all isolated compounds of Typhonium genus with confirmed chemical structures. Further advanced studies are necessary to establish the detailed signaling pathways that are involved in the anticancer property of the compounds.

    Matched MeSH terms: Antineoplastic Agents, Phytogenic/chemistry*
  15. Rajan DS, Rajkumar M, Srinivasan R, Harikumar RP, Suresh S, Kumar S
    Pak J Biol Sci, 2013 Nov 01;16(21):1336-41.
    PMID: 24511743
    Seaweeds have been used by mankind as medicine and food for more than 13,000 years. Marine algae are considered to produce a valuable phytoconstituents characterized by a broad spectrum of antitumor activities. The aim of the present study was to explore the effect of different solvent extracts of Sargassum wightii, Greville against Dalton's Ascitic Lymphoma (DAL) in Swiss male albino mice. DAL cells were injected intraperitoneally 1 x10(6) cell to the mice. Two days after cells injection the animals were treated with different solvent extracts of Sargassum wightii at dose of 200 mg kg(-1) for 14 days. 5-fluorouracil (20 mg kg(-1)) was used as reference drug. On day 11, cancer cell number, packed cell volume, decrease in tumour weight of the mice, increase in life span and hematological parameters were evaluated and compared with the same parameters in control. A significant increase in the life span and a decrease in the cancer cell number and tumour weight were noted in the tumour-induced mice after treatment with the extract. The haematological parameters were also normalized by the ethanolic and chloroform extracts in tumour-induced mice. These observations are suggestive of the protective effect of ethanolic extract of Sargassum wightii is comparatively better than other two tested extracts against Dalton's Ascitic Lymphoma (DAL).
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/chemistry*
  16. Krishnan P, Rajan M, Kumari S, Sakinah S, Priya SP, Amira F, et al.
    Sci Rep, 2017 09 08;7(1):10962.
    PMID: 28887536 DOI: 10.1038/s41598-017-09140-1
    Camptothecin (CPT) is an anti-cancer drug that effectively treats various cancers, including colon cancer. However, poor solubility and other drawbacks have restricted its chemotherapeutic potential. To overcome these restrictions, CPT was encapsulated in CEF (cyclodextrin-EDTA-FE3O4), a composite nanoparticle of magnetic iron oxide (Fe3O4), and β-cyclodextrin was cross-linked with ethylenediaminetetraacetic acid (EDTA). This formulation improved CPT's solubility and bioavailability for cancer cells. The use of magnetically responsive anti-cancer formulation is highly advantageous in cancer chemotherapy. The chemical characterisation of CPT-CEF was studied here. The ability of this nano-compound to induce apoptosis in HT29 colon cancer cells and A549 lung cancer cells was evaluated. The dose-dependent cytotoxicity of CPT-CEF was shown using MTT. Propidium iodide and Annexin V staining, mitochondrial membrane depolarisation (JC-1 dye), and caspase-3 activity were assayed to detect apoptosis in CPT-CEF-treated cancer cells. Cell cycle analysis also showed G1 phase arrest, which indicated possible synergistic effects of the nano-carrier. These study results show that CPT-CEF causes a dose-dependent cell viability reduction in HT29 and A549 cells and induces apoptosis in colon cancer cells via caspase-3 activation. These data strongly suggest that CPT could be used as a major nanocarrier for CPT to effectively treat colon cancer.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/chemistry*
  17. Tan JBL, Kwan YM
    Food Chem, 2020 Jul 01;317:126411.
    PMID: 32087517 DOI: 10.1016/j.foodchem.2020.126411
    Widely used throughout the world as traditional medicine for treating a variety of diseases ranging from cancer to microbial infections, members of the Tradescantia genus show promise as sources of desirable bioactive compounds. The bioactivity of several noteworthy species has been well-documented in scientific literature, but with nearly seventy-five species, there remains much to explore in this genus. This review aims to discuss all the bioactivity-related studies of Tradescantia plants and the compounds discovered, including their anticancer, antimicrobial, antioxidant, and antidiabetic activities. Gaps in knowledge will also be identified for future research opportunities.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/chemistry
  18. Asiri SM, Shaari K, Abas F, Al-Mekhlafi NA, Lajis NH
    Nat Prod Commun, 2012 Oct;7(10):1333-6.
    PMID: 23157003
    Two new naphthoquinones designated as 3alpha-hydroxy-2-(2-hydroxypropan-2-yI)-9alpha-methoxy-2,3,3alpha,9alpha-tetra-hydronaphtho[2,3-b]furan-4,9-dione (callicarpa-quinone A, 1) and 5-hydroxy-2-(2-hydroxypropan-2-yl)naphtho[2,3-b]furan-4,9-dione (callicarpaquinone B, 2) were isolated from the chloroform fraction of Callicarpa maingayi. Three other known compounds, identified as avicequinone-C (3), wodeshiol (4) and paulownin (5), were reported for the first time from this species. The structure elucidation of compounds was established by comprehensive 1D and 2D NMR spectroscopic analyses as well as EIMS, UV and IR spectral data. Compounds 1 and 2 were tested in vitro for their cytotoxic activity against human breast cancer MCF-7cells. Compound 2 exhibited strong cytotoxic activity with an IC50 value of 1.9 +/- 0.2 microM, while 1 showed moderate activity with an IC50 value of 25.0 +/- 4.3 microM.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/chemistry*
  19. Ahmat N, Wibowo A, Mohamad SA, Low AL, Sufian AS, Yusof MI, et al.
    J Asian Nat Prod Res, 2014;16(11):1099-107.
    PMID: 25034352 DOI: 10.1080/10286020.2014.938059
    A new tetramer oligostilbenoid possessing tetrahydrofuran ring, malaysianol C (1), was isolated from the acetone extract of the stem bark of Dryobalanops lanceolata, together with four known oligostilbenoids nepalensinol E (2), ϵ-viniferin (3), laevifonol (4), and ampelopsin F (5). The structures of isolated compounds were elucidated on the basis of spectral evidence. The antibacterial activity of the isolated compounds was evaluated using resazurin microtitre-plate assay, whereas the cytotoxic activity was tested using MTT assay. The plausible biogenetic routes of the isolated compounds are also discussed.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/chemistry
  20. Kamarulzaman FA, Shaari K, Ho AS, Lajis NH, Teo SH, Lee HB
    Chem Biodivers, 2011 Mar;8(3):494-502.
    PMID: 21404433 DOI: 10.1002/cbdv.201000341
    In our screening program for new photosensitizers from Malaysian biodiversity for photodynamic therapy (PDT) of cancer, MeOH extracts of ten terrestrial plants from Cameron Highlands in Pahang, Peninsular Malaysia, were tested. In a short-term 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, 20 μg/ml each of these extracts were incubated in a pro-myelocytic leukemia cell-line, HL60, with or without irradiation with 9.6 J/cm(2) of a broad spectrum light. Three samples, Labisia longistyla, Dichroa febrifuga, and Piper penangense, were photocytotoxic by having at least twofold lower cell viability when irradiated compared to the unirradiated assay. The extract of the leaves of Piper penangense, a shrub belonging to the family Piperaceae and widely distributed in the tropical and subtropical regions in the world, was subsequently subjected to bioassay-guided fractionation using standard chromatography methods. Eight derivatives of pheophorbide-a and -b were identified from the fractions that exhibited strong photocytotoxicity. By spectroscopic analysis, these compounds were identified as pheophorbide-a methyl ester (1), (R,S)-13(2) -hydroxypheophorbide-a methyl ester (2 and 3), pheophorbide-b methyl ester (4), 13(2) -hydroxypheophorbide-b methyl ester (5), 15(2) -hydroxylactone pheophorbide-a methyl ester (6), 15(2) -methoxylactone pheophorbide-a methyl ester (7), 15(2) -methoxylactone pheophorbide-b methyl ester (8).
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links