The current research concentrated on the Co-precipitation synthesis of g-C3N4 (CN), ZnO, ZnO/CN, and Co-doped ZnO/CN nanocomposite, as well as the solar light enhanced photocatalytic treatment of Reactive Red 120 (RR120) from genuine wool textile effluent. The 3D flower-like structure of Co-doped ZnO distributed on the surface of CN thin sheets, according to structural studies employing XRD and SEM examinations Electrochemical experiments exhibited that the Co-doped ZnO/CN nanocomposite has a large electroactive surface area. The optical band-gap values of CN, ZnO, ZnO/CN, and Co-doped ZnO/CN nanocomposites were 2.68, 3.13, 2.38, and 2.23 eV, respectively, according to optical characterizations. The synergistic effects and heterojunction produced by Co-doped ZnO and CN can be linked to the narrow gap in nanocomposites. After 75, 60, 50, and 40 min of exposure to solar light, photocatalytic degradation assays for 250 mL of 20 mg/L RR120 solution in the presence of CN, ZnO, ZnO/CN, and Co-doped ZnO/CN nanocomposites demonstrated 100% dye treatment. The applicability of photocatalysts for decolorization of 250 mL of 10 mg/L RR120 prepared from actual wool textile wastewater was investigated, and the results showed that Co-doped ZnO/CN nanocomposites for treatment of RR120 from actual wool textile wastewater were highly efficient at photocatalytic degradation.
The concentration, distribution, and risk assessment of parabens were determined in the surface water of the Terengganu River, Malaysia. Target chemicals were extracted via solid-phase extraction, followed by high-performance liquid chromatography analysis. Method optimization produced a high percentage recovery for methylparaben (MeP, 84.69 %), ethylparaben (EtP, 76.60 %), and propylparaben (PrP, 76.33 %). Results showed that higher concentrations were observed for MeP (3.60 μg/L) as compared with EtP (1.21 μg/L) and PrP (1.00 μg/L). Parabens are ubiquitously present in all sampling stations, with >99 % of detection. Salinity and conductivity were the major factors influencing the level of parabens in the surface water. Overall, we found no potential risk of parabens in the Terengganu River ecosystem due to low calculated risk assessment values (risk quotient
Palm oil fuel ash (POFA) has limited use as a fertilizer, while contribute effectively to the environmental contamination and health risks. Petroleum sludge poses a serious effect on the ecological environment and human health. The present work aimed to present a novel encapsulation process with POFA binder for treating petroleum sludge. Among 16 polycyclic aromatic hydrocarbons, four compounds were selected for the optimization of encapsulation process due to their high risk as carcinogenic substrates. Percentage PS (10-50%) and curing days (7-28 days) factors were used in the optimization process. The leaching test of PAHs was assessed using a GC-MS. The best operating parameters to minimize PAHs leaching from solidified cubes with OPC and10% POFA were recorded with 10% PS and after 28 days, at which PAH leaching was 4.255 and 0.388 ppm with R2 is 0.90%. Sensitivity analysis of the actual and predicted results for both the control and the test (OPC and 10% POFA) revealed that the actual results of the 10% POFA experiments have a high consistency with the predicted data (R2 0.9881) while R2 in the cement experiments was 0.8009. These differences were explained based on the responses of PAH leaching toward percentage of PS and days of cure. In the OPC encapsulation process, the main role was belonged to PS% (94.22%), while with 10% POFA, PS% contributed by 32.36 and cure day contributed by 66.91%.
L-asparaginase is an enzyme commonly used to treat acute lymphoblastic leukemia. Commercialized bacterial L-asparaginase has been reported to cause several life-threatening complications during treatment, hence the need to seek alternative sources of L-asparaginase. In this study, the novelty of upstream and downstream bioprocessing of L-asparaginase from a fungal endophyte, Colletotrichum gloeosporioides, and the cytotoxicity evaluation was demonstrated. Six variables (carbon source and concentration, nitrogen source and concentration, incubation period, temperature, pH and agitation rate) known to influence L-asparaginase production were studied using One-Factor-At-A-Time (OFAT) approach, with four significant variables further optimized using Response Surface Methodology (RSM). The crude extract produced using optimized condition was purified, characterized and examined for its anticancer effect. Purification of fungal L-asparaginase was performed via ultrafiltration and size exclusion chromatography, which are less common techniques. The protein profile and monomeric weight of L-asparaginase were determined using SDS-PAGE and Western blot. Cytotoxicity of purified L-asparaginase on leukemic Jurkat E6 and oral carcinoma cells were studied using MTS assay for 24 h and 48 h. OFAT results from optimization showed that glucose and L-asparagine concentrations, incubation period and temperature, were significant factors affecting L-asparaginase production by C. gloeosporioides. RSM analysis further evidence the significant interaction between glucose and L-asparagine concentrations in inducing L-asparaginase production. Purified L-asparaginase was profiled with specific activity of 255.02 IU/mg protein, purification fold of 6.12, and 34.63% of enzyme recovery. SDS and Western blot revealed that the purified L-asparaginase might be a tetramer with monomeric units of 25 kDa. Purified L-asparaginase was discovered to be more efficient against Jurkat leukemic cells than against H103 oral carcinoma cells, as lower IC50 value was observed for Jurkat cell lines (46 .36 ± 1.52 µg/mL for Jurkat and 125.56 ± 7.28 µg/mL for H103). In short, purified L-asparaginase derived from endophytic C. gloeosporioides showed high purity and significant anticancer effect toward cancer cells. This study therefore demonstrated the potential of fungal L-asparaginase as alternative chemotherapy drug in the future.
C50 carotenoids, as unique bioactive molecules, have many biological properties, including antioxidant, anticancer, and antibacterial activity, and have a wide range of potential uses in the food, cosmetic, and biomedical industries. The majority of C50 carotenoids are produced by the sterile fermentation of halophilic archaea. This study aims to look at more cost-effective and manageable ways of producing C50 carotenoids. The basic medium, carbon source supplementation, and optimal culture conditions for Halorubrum sp. HRM-150 C50 carotenoids production by open fermentation were examined in this work. The results indicated that Halorubrum sp. HRM-150 grown in natural brine medium grew faster than artificial brine medium. The addition of glucose, sucrose, and lactose (10 g/L) enhanced both biomass and carotenoids productivity, with the highest level reaching 4.53 ± 0.32 μg/mL when glucose was added. According to the findings of orthogonal studies based on the OD600 and carotenoids productivity, the best conditions for open fermentation were salinity 20-25%, rotation speed 150-200 rpm, and pH 7.0-8.2. The up-scaled open fermentation was carried out in a 7 L medium under optimum culture conditions. At 96 h, the OD600 and carotenoids productivity were 9.86 ± 0.51 (dry weight 10.40 ± 1.27 g/L) and 7.31 ± 0.65 μg/mL (701.40 ± 21.51 μg/g dry weight, respectively). When amplified with both universal bacterial primer and archaeal primer in the open fermentation, Halorubrum remained the dominating species, indicating that contamination was kept within an acceptable level. To summarize, open fermentation of Halorubrum is a promising method for producing C50 carotenoids.
Astaxanthin (AST) has outstanding antioxidant and anti-inflammation bioactivities, but the low biocompatibility and stability limit its application in foods. In this study, N-succinyl-chitosan (NSC)-coated AST polyethylene glycol (PEG)-liposomes were constructed to enhance the biocompatibility, stability, and intestinal-targeted migration of AST. The AST NSC/PEG-liposomes were uniform in size, had larger particles, greater encapsulation efficiency, and better storage, pH, and temperature stability than the AST PEG-liposomes. AST NSC/PEG-liposomes exerted stronger antibacterial and antioxidant activities against Escherichia coli and Staphylococcus aureus than AST PEG-liposomes. The NSC coating not only protects AST PEG-liposomes from gastric acid but also prolongs the retention and sustained release of AST NSC/PEG-liposomes depending on the intestinal pH. Moreover, caco-2 cellular uptake studies showed that AST NSC/PEG-liposomes had higher cellular uptake efficiency than AST PEG-liposomes. And AST NSC/PEG-liposomes were taken up by caco-2 cells through clathrin mediated endocytic, macrophage pathways and paracellular transport pathway. These results further proved that AST NSC/PEG-liposomes delayed the release and promoted the intestinal absorption of AST. Hence, AST PEG-liposomes coated with NSC could potentially be used as an efficient delivery system for therapeutic AST.
An efficient electrochemical biosensor has been developed for the simultaneous evaluation of DNA bases using AgNPs-embedded covalent organic framework (COF). The COF (p-Phenylenediamine and terephthalaldehyde) was synthesized by reflux (DMF; 150 °C; 12 h) and the nanoparticles were embedded from the aqueous solutions of AgNO3 and NaBH4. The nanocomposite-modified COF was confirmed by spectral, microscopic, and electrochemical techniques. The nanocomposite material was deposited on a glassy carbon electrode (GCE) and the redox behavior of AgNPs was confirmed by cyclic voltammetry. The electrocatalytic activities of DNA bases were analyzed by differential pulse voltammetry (DPV) in a physiological environment (PBS; pH = 7.0) based on simple and easy-to-use electrocatalyst. The AgNPs-COF/GCE showed well-defined anodic peak currents for the bases guanine (+ 0.63 V vs. Ag/AgCl), adenine (+ 0.89 V vs. Ag/AgCl), thymine (+ 1.10 V vs. Ag/AgCl), and cytosine (+ 1.26 V vs. Ag/AgCl) in a mixture as well as individuals with respect to the conventional, COF, and AgNPs/GCEs. The AgNPs-COF/GCE showed linear concentration range of DNA bases from 0.2-1000 µM (guanine; (G)), 0.1-500 µM (adenine (A)), 0.25-250 µM (thymine (T)) and 0.15-500 µM (cytosine (C)) and LOD of 0.043, 0.056, 0.062, and 0.051 µM (S/N = 3), respectively. The developed sensor showed reasonable selectivity, reproducibility (RSD = 1.53 ± 0.04%-2.58 ± 0.02% (n = 3)), and stability (RSD = 1.22 ± 0.06%-2.15 ± 0.04%; n = 3) over 5 days of storage) for DNA bases. Finally, AgNPs-COF/GCE was used for the determination of DNA bases in human blood serum, urine and saliva samples with good recoveries (98.60-99.11%, 97.80-99.21%, and 98.69-99.74%, respectively).
Nanofibrillated cellulose (NFC) has found extensive potential and existing utilizations across various industries. Nonetheless, a notable constraint of NFC lies in its inherent hydrophilic nature, which restricts its suitability for non-aqueous application. This study aims at synthesising hydrophobic NFC through a two-step surface modification by reacting NFC with tannic acid and amine group. The study also investigated the effect of using various alkylamines on the properties of modified NFC. The hydrophobic NFC was characterized using various analytical techniques namely Thermogravimetric Analysis (TGA), X-Ray Diffraction analysis (XRD), Atomic Force Microscopy (AFM), Fourier Transform Infrared Spectroscopy (FTIR), elemental analysis, and contact angle measurements. The present study also looked into the possible use of modified NFC as a pharmaceutical excipient for the delivery of water insoluble curcumin. The analysis of curcumin binding onto the modified NFC was conducted using UV-Visible spectrophotometry. The findings from the study indicated that the modified NFC effectively bound a substantial quantity of curcumin (80 % - 87 %) and the binding varied for samples of different degree of substitution.
There has been a surge in effort in the development of various solid nanoparticles as Pickering emulsion stabilizers in the past decades. Regardless, the exploration of stabilizers that simultaneously stabilize and deliver bioactive has been limited. For this, liposomes with amphiphilic nature have been introduced as Pickering emulsion stabilizers but these nano-sized vesicles lack targeting specificity. Therefore in this study, superparamagnetic iron oxide nanoparticles (SPION) encapsulated within liposomes (MLP) were used as Pickering emulsion stabilizers to prepare pH and magnetic-responsive Pickering emulsions. A stable MLP-stabilized Pickering emulsion formulation was established by varying the MLP pH, concentration, and oil loading during the emulsification process. The primary stabilization mechanism of the emulsion under pH variation was identified to be largely associated with the MLP phosphate group deprotonation. When subjected to sequential pH adjustment to imitate the gastrointestinal digestion pH environment, a recovery in Pickering emulsion integrity was observed as the pH changes from acidic to alkaline. By incorporating SPION, the Pickering emulsion can be guided to the targeted site under the influence of a magnetic field without compromising emulsion stability. Overall, the results demonstrated the potential of MLP-stabilized Pickering emulsion as a dual pH- and magnetic-responsive drug delivery carrier with the ability to co-encapsulate hydrophobic and hydrophilic bioactive.
In this study, the fruit of Terminalia chebula, commonly known as chebulic myrobalan, is used as the precursor for carbon for its application in supercapacitors. The Terminalia chebula biomass-derived sponge-like porous carbon (TC-SPC) is synthesized using a facile and economical method of pyrolysis. TC-SPC thus obtained is subjected to XRD, FESEM, TEM, HRTEM, XPS, Raman spectroscopy, ATR-FTIR, and nitrogen adsorption-desorption analyses for their structural and chemical composition. The examination revealed that TC-SPC has a crystalline nature and a mesoporous and microporous structure accompanied by a disordered carbon framework that is doped with heteroatoms such as nitrogen and sulfur. Electrochemical studies are performed on TC-SPC using cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy. TC-SPC contributed a maximum specific capacitance of 145 F g-1 obtained at 1 A g-1. The cyclic stability of TC-SPC is significant with 10,000 cycles, maintaining the capacitance retention value of 96%. The results demonstrated that by turning the fruit of Terminalia chebula into an opulent product, a supercapacitor, TC-SPC generated from biomass has proven to be a potential candidate for energy storage application.
The use of pesticides has led to environmental pollution and posed a global health risk, since they remain as residues on foods. Beans one of the most widely cultivated crop in Africa, and susceptible to attack by insects both on field and during storage, leading to the application of pesticides to control pests' infestation. However, misuse of these chemicals by farmers on beans has resulted in the rejection of beans exported to European countries, due to the presence of pesticide residues at concentrations higher than the maximum residues levels (MRLs). In this study, the effectiveness of the Association Official Analytical Chemists (AOAC) Official Method and the European Committee of Standardization (CEN) Standard Method, were determined using multivariate approach for the analysis of organochlorine pesticide residues in 6 varieties of beans samples. The significance of factors (mass of sample, volume of acetonitrile, mass of magnesium sulphate, sample pH, centrifugation time and speed) affecting the efficiency of extraction was estimated using Plackett-Burman design, while central composite design was used to optimize the significant factors. The following optimum factors were subsequently used for method validation, recovery tests, and real sample analysis: 4 g of sample sludge (1:1 v/v), 10 mL of acetonitrile, 4.45 g of MgSO4, and 5 min of centrifugation at 5000 rpm. The figure of merit of analytical methodology estimated using matrix-matched internal standard calibration method gave linearity ranging from 0.25 to 500 μg/kg, with correlation coefficient (R2) greater than 0.99, the recovery ranged from 75.55 to 110.41 (RSD = 0.70-16.65), with LOD and LOQ of 0.23-1.77 μg/kg and 0.76-5.88 μg/kg, respectively.
Context: Sweat glands (SGs) play a vital role in thermal regulation. The function and structure are altered during the different pathological conditions.Objective: These alterations are studied through three techniques: biopsy, sweat analytes and electrical activity of SG.Methods: The morphological study of SG through biopsy and various techniques involved in quantifying sweat analytes is focussed on here. Electrical activities of SG in diabetes, neuropathy and nephropathy cases are also discussed, highlighting their limitations and future scope.Results and Conclusion: The result of this review identified three areas of the knowledge gap. The first is wearable sensors to correlate pathological conditions. Secondly, there is no device to look for its structure and quantify its associated function. Finally, therapeutic applications of SG are explored, especially for renal failure. With these aspects, this paper provides information collection and correlates SG with pathologies related to diabetes. Hence this could help researchers develop suitable technologies for the gaps identified.
In this study, we aimed to increase the knowledge regarding the response mechanisms which were associated with the formation of CdS thin films. CdS thin film remains the most appealing alternative for many researchers, as it has been a capable buffer material for effect in film based polycrystalline solar cells (CdTe, CIGSe, CZTS). The Linker Assisted and Chemical Bath Deposition (LA-CBD) technique, which combines the Linker Assisted (LA) technique and the chemical bath deposition (CBD) method for forming high quality CdS thin film, was presented as an efficient and novel hybrid sensitization technique. CdS films were bound to soda lime with the help of electrostatic forces, which led to the formation of the intermediate complexes [Cd (NH3)4]2+ that helped in the collision of these complexes with a soda lime slide. Salvia dye and as a linker molecule 3-Mercaptopropionic acid (MPA) was used in the one step fabrication technique. Optical results showed that the bandgap varied in the range of (2.50 to 2.17) eV. Morphological properties showed a homogeneous distribution of the particles that aspherical in shape in the CdS + MPA + Salvia dye films. This technique significantly affected on the electrical characterizations of CdS films after the annealing process. The CdS + Ag + MPA + Salvia dye films showed the maximum carrier concentration and minimum resistivity, as 5.64 × 10 18 cm-3 and 0.83 Ω cm respectively.
Infectious diseases are major threat due to it being the main cause of enormous morbidity and mortality in the world. Multidrug-resistant (MDR) bacteria put an additional burden of infection leading to inferior treatment by the antibiotics of the latest generations. The emergence and spread of MDR bacteria (so-called "superbugs"), due to mutations in the bacteria and overuse of antibiotics, should be considered a serious concern. Recently, the rapid advancement of nanoscience and nanotechnology has produced several antimicrobial nanoparticles. It has been suggested that nanoparticles rely on very different mechanisms of antibacterial activity when compared to antibiotics. Graphene-based nanomaterials are fast emerging as "two-dimensional wonder materials" due to their unique structure and excellent mechanical, optical and electrical properties and have been exploited in electronics and other fields. Emerging trends show that their exceptional properties can be exploited for biomedical applications, especially in drug delivery and tissue engineering. Moreover, graphene derivatives were found to have in vitro antibacterial properties. In the recent years, there have been many studies demonstrating the antibacterial effects of GO on various types of bacteria. In this review article, we will be focusing on the aforementioned studies, focusing on the mechanisms, difference between the studies, limitations and future directions.
Driven by the need for solutions to address the global issue of waste accumulation from human activities and industries, this study investigates the thermal behaviors of empty fruit bunch (EFB), tyre waste (TW), and their blends during co-pyrolysis, exploring a potential method to convert waste into useable products. The kinetics mechanism and thermodynamics properties of EFB and TW co-pyrolysis were analysed through thermogravimetric analysis (TGA). The rate of mass loss for the blend of EFB:TW at a 1:3 mass ratio shows an increase of around 20% due to synergism. However, the blend's average activation energy is higher (298.64 kJ/mol) when compared with single feedstock pyrolysis (EFB = 257.29 kJ/mol and TW = 252.92 kJ/mol). The combination of EFB:TW at a 3:1 ratio does not result in synergistic effects on mass loss. However, a lower activation energy is reported, indicating the decomposition process can be initiated at a lower energy requirement. The reaction model that best describes the pyrolysis of EFB, TW and their blends can be categorised into the diffusion and power model categories. An equal mixture of EFB and TW was the preferred combination for co-management because of the synergistic effect, which significantly impacts the co-pyrolysis process. The mass loss rate experiences an inhibitive effect at an earlier stage (320 °C), followed by a promotional impact at the later stage (380 °C). The activation energy needed for a balanced mixture is the least compared to all tested feedstocks, even lower than the pyrolysis of a single feedstock. The study revealed the potential for increasing decomposition rates using lower energy input through the co-pyrolysis of both feedstocks. These findings evidenced that co-pyrolysis is a promising waste management and valorisation pathway to deal with overwhelming waste accumulation. Future works can be conducted at a larger scale to affirm the feasibility of EFB and TW co-management.
Pickering foams have great potential for applications in aerated foods, but their foaming ability and physical stability are still far from satisfactory. Herein, solid lipid particles (SLNs) were fabricated by using diacylglycerol of varying acyl chain lengths with modification by a protein. The SLNs showed different crystal polymorphisms and air-water interfacial activity. C14-DAG SLN with a contact angle ∼ 79° formed aqueous foam with supreme stability and high plasticity. Whey protein isolate and sodium caseinate (0.1 wt %) considerably enhanced the foamability and interfacial activity of SLNs and promoted the packing of particles at the bubble surface. However, high protein concentration caused foam destruction due to the competitive adsorption effect. β-sheet increased in protein after adsorption and changed the polymorphism and thermodynamic properties of SLN. The foam collapsing behaviors varied in the presence of protein. The results gave insights into fabricating ultrastable aqueous foams by using high-melting DAG particles. The obtained foams demonstrated good temperature sensitivity and plasticity, which showed promising application prospects in the food and cosmetic fields.
Diacylglycerol (DAG) is a novel functional structural lipid, but its application in base oils remains underexplored. This research investigated the effect of three liquid oils (groundnut oil, corn oil, and flaxseed oil), with varying polyunsaturated fatty acid (PUFA) (39.60, 69.50, and 77.65 %) and DAG content (0.00, 40.00, 80.00 %), on the crystallization behaviors of palm-based oil. DAG (40.00 %), obtained through enzymatic glycerolysis and molecular distillation, was found to stabilize the binary system with good compatibility and fine crystal structure. "Liquid" DAG played a dual role: diluting solid lipids, and promoting crystallization. Increasing DAG content led to larger crystalline domain size, while higher PUFA content accelerated crystallization and increased crystal orderliness, though decreasing crystal density. These results demonstrated the clear influence of PUFA and DAG content on palm-based oil crystallization. This knowledge can guide the utilization of different unsaturated DAGs for tailored fat crystallization in food application.
The increasing concern over sugar-related health issues has sparked research interest in seeking alternatives to sucrose. Trehalulose, a beneficial structural isomer of sucrose, is a non-cariogenic sugar with a low glycemic and insulinemic index. Besides its potential as a sugar substitute, trehalulose exhibits high antioxidant properties, making it attractive for various industrial applications. Despite its numerous advantages and potential application in various sectors, the industrial adoption of trehalulose has yet to be established due to lack of studies on its characteristics and practical uses. This review aims to provide a comprehensive overview of the properties of trehalulose, emphasizing its health benefits. The industrial prospects of trehalulose as sweetener and reducing agent, particularly in food and beverages pharmaceutical, and cosmeceutical sectors, are explored. Additionally, the review delves into the sources of trehalulose and the diverse organisms capable of producing trehalulose. The biosynthesis of this sugar primarily involves an enzyme-mediated process. Thus, these enzymes' properties, mechanisms, and the heterologous expression of genes associated with trehalulose production are explored. The strategies discussed in this review can be improved and applied to establish trehalulose bio-factories for efficient synthesis of trehalulose in the future. With further research and development, trehalulose holds promise as a valuable component across various industries.
Antimicrobial peptides (AMPs) are the most favorable alternatives in overcoming multidrug resistance, alone or synergistically with conventional antibiotics. Plant-derived AMPs, as cysteine-rich peptides, widely compensate the pharmacokinetic drawbacks of peptide therapeutics. Compared to the putative genes encrypted in the genome, AMPs that are produced under stress are active forms with the ability to combat resistant microbial species. Within this study, plant-derived AMPs, namely, defensins, nodule-specific cysteine-rich peptides, snakins, lipid transfer proteins, hevein-like proteins, α-hairpinins, and aracins, expressed under biotic and abiotic stresses, are classified. We could observe that while α-hairpinins and snakins display a helix-turn-helix structure, conserved motif patterns such as β1αβ2β3 and β1β2β3 exist in plant defensins and hevein-like proteins, respectively. According to the co-expression data, several plant AMPs are expressed together to trigger synergistic effects with membrane disruption mechanisms such as toroidal pore, barrel-stave, and carpet models. The application of AMPs as an eco-friendly strategy in maintaining agricultural productivity through the development of transgenes and bio-pesticides is discussed. These AMPs can be consumed in packaging material, wound-dressing products, coating catheters, implants, and allergology. AMPs with cell-penetrating properties are verified for the clearance of intracellular pathogens. Finally, the dominant pharmacological activities of bioactive peptides derived from the gastrointestinal digestion of plant AMPs, namely, inhibitors of renin and angiotensin-converting enzymes, dipeptidyl peptidase IV and α-glucosidase inhibitors, antioxidants, anti-inflammatory, immunomodulating, and hypolipidemic peptides, are analyzed. Conclusively, as phytopathogens and human pathogens can be affected by plant-derived AMPs, they provide a bright perspective in agriculture, breeding, food, cosmetics, and pharmaceutical industries, translated as farm to bedside.
Enzymes of commercial importance, such as lipase, amylase, laccase, phytase, carbonic anhydrase, pectinase, maltase, glucose oxidase etc., show multifunctional features and have been extensively used in several fields including fine chemicals, environmental, pharmaceutical, cosmetics, energy, food industry, agriculture and nutraceutical etc. The deployment of biocatalyst in harsh industrial conditions has some limitations, such as poor stability. These drawbacks can be overcome by immobilizing the enzyme in order to boost the operational stability, catalytic activity along with facilitating the reuse of biocatalyst. Nowadays, functionalized polymers and composites have gained increasing attention as an innovative material for immobilizing the industrially important enzyme. The different types of polymeric materials and composites are pectin, agarose, cellulose, nanofibers, gelatin, and chitosan. The functionalization of these materials enhances the loading capacity of the enzyme by providing more functional groups to the polymeric material and hence enhancing the enzyme immobilization efficiency. However, appropriate coordination among the functionalized polymeric materials and enzymes of interest plays an important role in producing emerging biocatalysts with improved properties. The optimal coordination at a biological, physical, and chemical level is requisite to develop an industrial biocatalyst. Bio-catalysis has become vital aspect in pharmaceutical and chemical industries for synthesis of value-added chemicals. The present review describes the current advances in enzyme immobilization on functionalized polymers and composites. Furthermore, the applications of immobilized enzymes in various sectors including bioremediation, biosensor and biodiesel are also discussed.