Displaying publications 61 - 80 of 275 in total

Abstract:
Sort:
  1. Grigg MJ, William T, Piera KA, Rajahram GS, Jelip J, Aziz A, et al.
    Malar J, 2018 Dec 10;17(1):463.
    PMID: 30526613 DOI: 10.1186/s12936-018-2593-x
    BACKGROUND: Spreading Plasmodium falciparum artemisinin drug resistance threatens global malaria public health gains. Limited data exist to define the extent of P. falciparum artemisinin resistance southeast of the Greater Mekong region in Malaysia.

    METHODS: A clinical efficacy study of oral artesunate (total target dose 12 mg/kg) daily for 3 days was conducted in patients with uncomplicated falciparum malaria and a parasite count 

    Matched MeSH terms: Antimalarials/pharmacology*; Antimalarials/therapeutic use
  2. Ashraf K, Sultan S, Adam A
    J Pharm Bioallied Sci, 2018 9 22;10(3):109-118.
    PMID: 30237681 DOI: 10.4103/jpbs.JPBS_253_17
    Orthosiphon stamineus Benth. (Lamiaceae) is a valued medicinal plant in traditional folk medicine. Many pharmacological studies have demonstrated the ability of this plant to exhibit antimicrobial, antioxidant, hepatoprotection, antigenotoxic, antiplasmodial, cytotoxic, cardioactive, antidiabetic, anti-inflammatory activies. This review is a comprehensive summary of the presently available chemical, pharmacological investigations as well as the traditional and therapeutic uses of this plant. Important and different experimental data have been addressed along with a review of all phytochemicals identified in this plant, including flavonoids, terpenoids, and essential oils. O. stamineus has wide traditional and pharmacological uses in various pathophysiological conditions. Therefore, it is an attractive subject for further experimental and clinical investigations.
    Matched MeSH terms: Antimalarials
  3. Commons RJ, Simpson JA, Thriemer K, Humphreys GS, Abreha T, Alemu SG, et al.
    Lancet Infect Dis, 2018 Sep;18(9):1025-1034.
    PMID: 30033231 DOI: 10.1016/S1473-3099(18)30348-7
    BACKGROUND: Chloroquine remains the mainstay of treatment for Plasmodium vivax malaria despite increasing reports of treatment failure. We did a systematic review and meta-analysis to investigate the effect of chloroquine dose and the addition of primaquine on the risk of recurrent vivax malaria across different settings.

    METHODS: A systematic review done in MEDLINE, Web of Science, Embase, and Cochrane Database of Systematic Reviews identified P vivax clinical trials published between Jan 1, 2000, and March 22, 2017. Principal investigators were invited to share individual patient data, which were pooled using standardised methods. Cox regression analyses with random effects for study site were used to investigate the roles of chloroquine dose and primaquine use on rate of recurrence between day 7 and day 42 (primary outcome). The review protocol is registered in PROSPERO, number CRD42016053310.

    FINDINGS: Of 134 identified chloroquine studies, 37 studies (from 17 countries) and 5240 patients were included. 2990 patients were treated with chloroquine alone, of whom 1041 (34·8%) received a dose below the target 25 mg/kg. The risk of recurrence was 32·4% (95% CI 29·8-35·1) by day 42. After controlling for confounders, a 5 mg/kg higher chloroquine dose reduced the rate of recurrence overall (adjusted hazard ratio [AHR] 0·82, 95% CI 0·69-0·97; p=0·021) and in children younger than 5 years (0·59, 0·41-0·86; p=0·0058). Adding primaquine reduced the risk of recurrence to 4·9% (95% CI 3·1-7·7) by day 42, which is lower than with chloroquine alone (AHR 0·10, 0·05-0·17; p<0·0001).

    INTERPRETATION: Chloroquine is commonly under-dosed in the treatment of vivax malaria. Increasing the recommended dose to 30 mg/kg in children younger than 5 years could reduce substantially the risk of early recurrence when primaquine is not given. Radical cure with primaquine was highly effective in preventing early recurrence and may also improve blood schizontocidal efficacy against chloroquine-resistant P vivax.

    FUNDING: Wellcome Trust, Australian National Health and Medical Research Council, and Bill & Melinda Gates Foundation.

    Matched MeSH terms: Antimalarials/therapeutic use*
  4. Grigg MJ, William T, Barber BE, Rajahram GS, Menon J, Schimann E, et al.
    Clin Infect Dis, 2018 Jul 18;67(3):350-359.
    PMID: 29873683 DOI: 10.1093/cid/ciy065
    BACKGROUND: Plasmodium knowlesi is increasingly reported in Southeast Asia, but prospective studies of its clinical spectrum in children and comparison with autochthonous human-only Plasmodium species are lacking.

    METHODS: Over 3.5 years, we prospectively assessed patients of any age with molecularly-confirmed Plasmodium monoinfection presenting to 3 district hospitals in Sabah, Malaysia.

    RESULTS: Of 481 knowlesi, 172 vivax, and 96 falciparum malaria cases enrolled, 44 (9%), 71 (41%), and 31 (32%) children aged ≤12 years. Median parasitemia was lower in knowlesi malaria (2480/μL [interquartile range, 538-8481/μL]) than in falciparum (9600/μL; P < .001) and vivax malaria. In P. knowlesi, World Health Organization-defined anemia was present in 82% (95% confidence interval [CI], 67%-92%) of children vs 36% (95% CI, 31%-41%) of adults. Severe knowlesi malaria occurred in 6.4% (95% CI, 3.9%-8.3%) of adults but not in children; the commenst severity criterion was acute kideny injury. No patient had coma. Age, parasitemia, schizont proportion, abdominal pain, and dyspnea were independently associated with severe knowlesi malaria, with parasitemia >15000/μL the best predictor (adjusted odds ratio, 16.1; negative predictive value, 98.5%; P < .001). Two knowlesi-related adult deaths occurred (fatality rate: 4.2/1000 adults).

    CONCLUSIONS: Age distribution and parasitemia differed markedly in knowlesi malaria compared to human-only species, with both uncomplicated and severe disease occurring at low parasitemia. Severe knowlesi malaria occurred only in adults; however, anemia was more common in children despite lower parasitemia. Parasitemia independently predicted knowlesi disease severity: Intravenous artesunate is warranted initially for those with parasitemia >15000/μL.

    Matched MeSH terms: Antimalarials/therapeutic use
  5. Ahmad N, Samiulla DS, Teh BP, Zainol M, Zolkifli NA, Muhammad A, et al.
    Pharmaceutics, 2018 Jul 11;10(3).
    PMID: 29997335 DOI: 10.3390/pharmaceutics10030090
    Eurycoma longifolia is one of the commonly consumed herbal preparations and its major chemical compound, eurycomanone, has been described to have antimalarial, antipyretic, aphrodisiac, and cytotoxic activities. Today, the consumption of E. longifolia is popular through the incorporation of its extract in food items, most frequently in drinks such as tea and coffee. In the current study, the characterisation of the physicochemical and pharmacokinetic (PK) attributes of eurycomanone were conducted via a series of in vitro and in vivo studies in rats and mice. The solubility and chemical stability of eurycomanone under the conditions of the gastrointestinal tract environment were determined. The permeability of eurycomanone was investigated by determining its distribution coefficient in aqueous and organic environments and its permeability using the parallel artificial membrane permeability assay system and Caco-2 cultured cells. Eurycomanone's stability in plasma and its protein-binding ability were measured by using an equilibrium dialysis method. Its stability in liver microsomes across species (mice, rat, dog, monkey, and human) and rat liver hepatocytes was also investigated. Along with the PK evaluations of eurycomanone in mice and rats, the PK parameters for the Malaysian Standard (MS: 2409:201) standardised water extract of E. longifolia were also evaluated in rats. Both rodent models showed that eurycomanone in both the compound form and extract form had a half-life of 0.30 h. The differences in the bioavailability of eurycomanone in the compound form between the rats (11.8%) and mice (54.9%) suggests that the PK parameters cannot be directly extrapolated to humans. The results also suggest that eurycomanone is not readily absorbed across biological membranes. However, once absorbed, the compound is not easily metabolised (is stable), hence retaining its bioactive properties, which may be responsible for the various reported biological activities.
    Matched MeSH terms: Antimalarials
  6. Thriemer K, Bobogare A, Ley B, Gudo CS, Alam MS, Anstey NM, et al.
    Malar J, 2018 Jun 20;17(1):241.
    PMID: 29925430 DOI: 10.1186/s12936-018-2380-8
    The goal to eliminate malaria from the Asia-Pacific by 2030 will require the safe and widespread delivery of effective radical cure of malaria. In October 2017, the Asia Pacific Malaria Elimination Network Vivax Working Group met to discuss the impediments to primaquine (PQ) radical cure, how these can be overcome and the methodological difficulties in assessing clinical effectiveness of radical cure. The salient discussions of this meeting which involved 110 representatives from 18 partner countries and 21 institutional partner organizations are reported. Context specific strategies to improve adherence are needed to increase understanding and awareness of PQ within affected communities; these must include education and health promotion programs. Lessons learned from other disease programs highlight that a package of approaches has the greatest potential to change patient and prescriber habits, however optimizing the components of this approach and quantifying their effectiveness is challenging. In a trial setting, the reactivity of participants results in patients altering their behaviour and creates inherent bias. Although bias can be reduced by integrating data collection into the routine health care and surveillance systems, this comes at a cost of decreasing the detection of clinical outcomes. Measuring adherence and the factors that relate to it, also requires an in-depth understanding of the context and the underlying sociocultural logic that supports it. Reaching the elimination goal will require innovative approaches to improve radical cure for vivax malaria, as well as the methods to evaluate its effectiveness.
    Matched MeSH terms: Antimalarials/therapeutic use*
  7. Aziz MY, Hoffmann KJ, Ashton M
    J Pharm Sci, 2018 05;107(5):1461-1467.
    PMID: 29352982 DOI: 10.1016/j.xphs.2018.01.009
    The potential of the antimalarial piperaquine and its metabolites to inhibit CYP3A was investigated in pooled human liver microsomes. CYP3A activity was measured by liquid chromatography-tandem mass spectrometry as the rate of 1'-hydroxymidazolam formation. Piperaquine was found to be a reversible, potent inhibitor of CYP3A with the following parameter estimates (%CV): IC50 = 0.76 μM (29), Ki = 0.68 μM (29). In addition, piperaquine acted as a time-dependent inhibitor with IC50 declining to 0.32 μM (28) during 30-min pre-incubation. Time-dependent inhibitor estimates were kinact = 0.024 min-1 (30) and KI = 1.63 μM (17). Metabolite M2 was a highly potent reversible inhibitor with estimated IC50 and Ki values of 0.057 μM (17) and 0.043 μM (3), respectively. M1 and M5 metabolites did not show any inhibitory properties within the limits of assay used. Average (95th percentile) simulated in vivo areas under the curve of midazolam increased 2.2-fold (3.7-fold) on the third which is the last day of piperaquine dosing, whereas for its metabolite M2, areas under the curve of midazolam increased 7.7-fold (13-fold).
    Matched MeSH terms: Antimalarials/metabolism; Antimalarials/pharmacology*
  8. Zaw MT, Emran NA, Lin Z
    J Microbiol Immunol Infect, 2018 Apr;51(2):159-165.
    PMID: 28711439 DOI: 10.1016/j.jmii.2017.06.009
    BACKGROUND: In the fight against malaria caused by Plasmodium falciparum, the successes achieved by artemisinin were endangered by resistance of the parasites to the drug. Whole genome sequencing approach on artemisinin resistant parasite line discovered k13 gene associated with drug resistance. In vitro and in vivo studies indicated mutations in the k13 gene were linked to the artemisinin resistance.

    METHODOLOGY: The literatures published after April, 2015 up to December, 2016 on k13 mutant alleles for artemisinin resistance in Plasmodium falciparum and relevant literatures were comprehensively reviewed.

    RESULTS: To date, 13 non-synonymous mutations of k13 gene have been observed to have slow parasite clearance. Worldwide mapping of k13 mutant alleles have shown mutants associated with artemisinin resistance were confined to southeast Asia and China and did not invade to African countries. Although in vitro ring stage survival assay of 0-3 h was a recently developed assay, it was useful for rapid detection of artemisinin resistance associated k13 allelic marker in the parasite. Recently, dissemination of k13 mutant alleles was recommended to be investigated by identity of haplotypes. Significant characteristics of well described alleles in the reports were mentioned in this review for the benefit of future studies.

    CONCLUSION: According to the updates in the review, it can be concluded artemisinin resistance does not disseminate to India and African countries within short period whereas regular tracking of these mutants is necessary.

    Matched MeSH terms: Antimalarials/pharmacology*
  9. Murugan K, Suresh U, Panneerselvam C, Rajaganesh R, Roni M, Aziz AT, et al.
    Environ Sci Pollut Res Int, 2018 Apr;25(11):10456-10470.
    PMID: 28913784 DOI: 10.1007/s11356-017-0074-3
    The development of novel mosquito control tools is a key prerequisite to build effective and reliable Integrated Vector Management strategies. Here, we proposed a novel method using cigarette butts for the synthesis of Ag nanostructures toxic to young instars of the malaria vector Anopheles stephensi, chloroquine (CQ)-resistant malaria parasites Plasmodium falciparum and microbial pathogens. The non-target impact of these nanomaterials in the aquatic environment was evaluated testing them at sub-lethal doses on the predatory copepod Mesocyclops aspericornis. Cigarette butt-synthesized Ag nanostructures were characterized by UV-vis and FTIR spectroscopy, as well as by EDX, SEM and XRD analyses. Low doses of cigarette butt extracts (with and without tobacco) showed larvicidal and pupicidal toxicity on An. stephensi. The LC50 of cigarette butt-synthesized Ag nanostructures ranged from 4.505 ppm (I instar larvae) to 8.070 ppm (pupae) using smoked cigarette butts with tobacco, and from 3.571 (I instar larvae) to 6.143 ppm (pupae) using unsmoked cigarette butts without tobacco. Smoke toxicity experiments conducted against adults showed that unsmoked cigarette butts-based coils led to mortality comparable to permethrin-based positive control (84.2 and 91.2%, respectively). A single treatment with cigarette butts extracts and Ag nanostructures significantly reduced egg hatchability of An. stephensi. Furthermore, the antiplasmodial activity of cigarette butt extracts (with and without tobacco) and synthesized Ag nanostructures was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of P. falciparum. The lowest IC50 values were achieved by cigarette butt extracts without tobacco, they were 54.63 μg/ml (CQ-s) and 63.26 μg/ml (CQ-r); while Ag nanostructure IC50 values were 72.13 μg/ml (CQ-s) and 77.33 μg/ml (CQ-r). In MIC assays, low doses of the Ag nanostructures inhibited the growth of Bacillus subtilis, Klebsiella pneumoniae and Salmonella typhi. Finally, the predation efficiency of copepod M. aspericornis towards larvae of An. stephensi did not decrease in a nanoparticle-contaminated environment, if compared to control predation assays. Overall, the present research would suggest that an abundant hazardous waste, such as cigarette butts, can be turned to an important resource for nanosynthesis of highly effective antiplasmodials and insecticides.
    Matched MeSH terms: Antimalarials
  10. Tindall SM, Vallières C, Lakhani DH, Islahudin F, Ting KN, Avery SV
    Sci Rep, 2018 02 06;8(1):2464.
    PMID: 29410428 DOI: 10.1038/s41598-018-20816-0
    Antimalarial drug resistance hampers effective malaria treatment. Critical SNPs in a particular, putative amino acid transporter were recently linked to chloroquine (CQ) resistance in malaria parasites. Here, we show that this conserved protein (PF3D7_0629500 in Plasmodium falciparum; AAT1 in P. chabaudi) is a structural homologue of the yeast amino acid transporter Tat2p, which is known to mediate quinine uptake and toxicity. Heterologous expression of PF3D7_0629500 in yeast produced CQ hypersensitivity, coincident with increased CQ uptake. PF3D7_0629500-expressing cultures were also sensitized to related antimalarials; amodiaquine, mefloquine and particularly quinine. Drug sensitivity was reversed by introducing a SNP linked to CQ resistance in the parasite. Like Tat2p, PF3D7_0629500-dependent quinine hypersensitivity was suppressible with tryptophan, consistent with a common transport mechanism. A four-fold increase in quinine uptake by PF3D7_0629500 expressing cells was abolished by the resistance SNP. The parasite protein localised primarily to the yeast plasma membrane. Its expression varied between cells and this heterogeneity was used to show that high-expressing cell subpopulations were the most drug sensitive. The results reveal that the PF3D7_0629500 protein can determine the level of sensitivity to several major quinine-related antimalarials through an amino acid-inhibitable drug transport function. The potential clinical relevance is discussed.
    Matched MeSH terms: Antimalarials/pharmacology*
  11. Abd Rahman R, DeKoninck P, Murthi P, Wallace EM
    J Matern Fetal Neonatal Med, 2018 Feb;31(4):525-529.
    PMID: 28142291 DOI: 10.1080/14767058.2017.1289511
    In this review, we discuss the potential use of antimalarial drugs as an adjuvant therapy for preeclampsia, focusing on the mechanisms of action of this class of drugs in the context of preeclampsia. In particular, hydroxychloroquine has been shown to have various beneficial effects on patients with systemic lupus erythematosus. There are several pathways targeted by the antimalarial drugs that are similar to the pathophysiology of preeclampsia and hence offering opportunities to develop novel therapies to treat the disease. Given the safety profile of hydroxychloroquine in pregnancy, there is merit in exploring the efficacy of this drug as an adjuvant therapy in women with early onset preeclampsia.
    Matched MeSH terms: Antimalarials/therapeutic use
  12. Karnad DR, Nor MBM, Richards GA, Baker T, Amin P, Council of the World Federation of Societies of Intensive and Critical Care Medicine
    J Crit Care, 2018 Feb;43:356-360.
    PMID: 29132978 DOI: 10.1016/j.jcrc.2017.11.007
    Severe malaria is common in tropical countries in Africa, Asia, Oceania and South and Central America. It may also occur in travelers returning from endemic areas. Plasmodium falciparum accounts for most cases, although P vivax is increasingly found to cause severe malaria in Asia. Cerebral malaria is common in children in Africa, manifests as coma and seizures, and has a high morbidity and mortality. In other regions, adults may also develop cerebral malaria but neurological sequelae in survivors are rare. Acute kidney injury, liver dysfunction, thrombocytopenia, disseminated intravascular coagulopathy (DIC) and acute respiratory distress syndrome (ARDS) are also common in severe malaria. Metabolic abnormalities include hypoglycemia, hyponatremia and lactic acidosis. Bacterial infection may coexist in patients presenting with shock or ARDS and this along with a high parasite load has a high mortality. Intravenous artesunate has replaced quinine as the antimalarial agent of choice. Critical care management as per severe sepsis is also applicable to severe malaria. Aggressive fluid boluses may not be appropriate in children. Blood transfusions may be required and treatment of seizures and raised intracranial pressure is important in cerebral malaria in children. Mortality in severe disease ranges from 8 to 30% despite treatment.
    Matched MeSH terms: Antimalarials/therapeutic use
  13. Amir A, Cheong FW, De Silva JR, Lau YL
    Parasit Vectors, 2018 01 23;11(1):53.
    PMID: 29361963 DOI: 10.1186/s13071-018-2617-y
    Every year, millions of people are burdened with malaria. An estimated 429,000 casualties were reported in 2015, with the majority made up of children under five years old. Early and accurate diagnosis of malaria is of paramount importance to ensure appropriate administration of treatment. This minimizes the risk of parasite resistance development, reduces drug wastage and unnecessary adverse reaction to antimalarial drugs. Malaria diagnostic tools have expanded beyond the conventional microscopic examination of Giemsa-stained blood films. Contemporary and innovative techniques have emerged, mainly the rapid diagnostic tests (RDT) and other molecular diagnostic methods such as PCR, qPCR and loop-mediated isothermal amplification (LAMP). Even microscopic diagnosis has gone through a paradigm shift with the development of new techniques such as the quantitative buffy coat (QBC) method and the Partec rapid malaria test. This review explores the different diagnostic tools available for childhood malaria, each with their characteristic strengths and limitations. These tools play an important role in making an accurate malaria diagnosis to ensure that the use of anti-malaria are rationalized and that presumptive diagnosis would only be a thing of the past.
    Matched MeSH terms: Antimalarials/therapeutic use
  14. Grigg MJ, William T, Barber BE, Rajahram GS, Menon J, Schimann E, et al.
    Clin Infect Dis, 2018 Jan 06;66(2):229-236.
    PMID: 29020373 DOI: 10.1093/cid/cix779
    BACKGROUND: Plasmodium knowlesi is reported increasingly across Southeast Asia and is the most common cause of malaria in Malaysia. No randomized trials have assessed the comparative efficacy of artemether-lumefantrine (AL) for knowlesi malaria.

    METHODS: A randomized controlled trial was conducted in 3 district hospitals in Sabah, Malaysia to compare the efficacy of AL against chloroquine (CQ) for uncomplicated knowlesi malaria. Participants were included if they weighed >10 kg, had a parasitemia count <20000/μL, and had a negative rapid diagnostic test result for Plasmodium falciparum histidine-rich protein 2. Diagnosis was confirmed by means of polymerase chain reaction. Patients were block randomized to AL (total target dose, 12 mg/kg for artemether and 60 mg/kg for lumefantrine) or CQ (25 mg/kg). The primary outcome was parasite clearance at 24 hours in a modified intention-to-treat analysis.

    RESULTS: From November 2014 to January 2016, a total of 123 patients (including 18 children) were enrolled. At 24 hours after treatment 76% of patients administered AL (95% confidence interval [CI], 63%-86%; 44 of 58) were aparasitemic, compared with 60% administered CQ (47%-72%; 39 of 65; risk ratio, 1.3 [95% CI, 1.0-1.6]; P = .06). Overall parasite clearance was shorter after AL than after CQ (median, 18 vs 24 hours, respectively; P = .02), with all patients aparasitemic by 48 hours. By day 42 there were no treatment failures. The risk of anemia during follow-up was similar between arms. Patients treated with AL would require lower bed occupancy than those treated with CQ (2414 vs 2800 days per 1000 patients; incidence rate ratio, 0.86 [95% CI, .82-.91]; P < .001). There were no serious adverse events.

    CONCLUSIONS: AL is highly efficacious for treating uncomplicated knowlesi malaria; its excellent tolerability and rapid therapeutic response allow earlier hospital discharge, and support its use as a first-line artemisinin-combination treatment policy for all Plasmodium species in Malaysia.

    CLINICAL TRIALS REGISTRATION: NCT02001012.

    Matched MeSH terms: Antimalarials/administration & dosage*; Antimalarials/adverse effects
  15. Safdar MH, Hasan H, Afzal S, Hussain Z
    Mini Rev Med Chem, 2018;18(12):1047-1063.
    PMID: 29173165 DOI: 10.2174/1389557517666171123212039
    The immune system is an intricate and coordinated nexus serving as a natural defense to preclude internal and external pathogenic insults. The deregulation in the natural balance of immunological functions as a consequence of either over expression or under expression of immune cells tends to cause disruption of homeostasis in the body and may lead to development of numerous immune system disorders. Chalcone moieties (1,3-diphenyl-2-propen-1-one) have been well-documented as ideal lead compounds or precursors to design a wide range of pharmacologically active agents to down-regulate various immune disorders. Owing to their unique structural and molecular framework, these α, β-unsaturated carbonyl-based moieties have also gained remarkable recognition due to their other multifarious pharmacological properties including antifungal, anti-inflammatory, anti-malarial, antibacterial, anti-tuberculosis, and anticancer potential. Though a great number of methodologies are currently being employed for their synthesis, this review mainly focuses on the natural and synthetic chalcone derivatives that are exclusively synthesized via Claisen-Schmidt condensation reaction and their immunomodulatory prospects. We have critically reviewed the literature and provided convincing evidence for the promising efficacy of chalcone derivatives to modulate functioning of various innate and adaptive immune players including granulocytes, mast cells, monocytes, macrophages, platelets, dendritic cells, natural killer cells, and T-lymphocytes.
    Matched MeSH terms: Antimalarials/chemical synthesis; Antimalarials/pharmacology; Antimalarials/chemistry
  16. Mat Ariffin N, Islahudin F, Kumolosasi E, Makmor-Bakry M
    BMC Infect Dis, 2017 12 08;17(1):759.
    PMID: 29216842 DOI: 10.1186/s12879-017-2868-9
    BACKGROUND: Recurrence rates of Plasmodium vivax infections differ across various geographic regions. Interestingly, South-East Asia and the Asia-Pacific region are documented to exhibit the most frequent recurrence incidences. Identifying patients at a higher risk for recurrences gives valuable information in strengthening the efforts to control P. vivax infections. The aim of the study was to develop a tool to identify P. vivax- infected patients that are at a higher risk of recurrence in Malaysia.

    METHODS: Patient data was obtained retrospectively through the Ministry of Health, Malaysia, from 2011 to 2016. Patients with incomplete data were excluded. A total of 2044 clinical P. vivax malaria cases treated with primaquine were included. Data collected were patient, disease, and treatment characteristics. Two-thirds of the cases (n = 1362) were used to develop a clinical risk score, while the remaining third (n = 682) was used for validation.

    RESULTS: Using multivariate analysis, age (p = 0.03), gametocyte sexual count (p = 0.04), indigenous transmission (p = 0.04), type of treatment (p = 0.12), and incomplete primaquine treatment (p = 0.14) were found to be predictors of recurrence after controlling for other confounding factors; these predictors were then used in developing the final model. The beta-coefficient values were used to develop a clinical scoring tool to predict possible recurrence. The total scores ranged between 0 and 8. A higher score indicated a higher risk for recurrence (odds ratio [OR]: 1.971; 95% confidence interval [CI]: 1.562-2.487; p ≤ 0.001). The area under the receiver operating characteristic (ROC) curve of the developed (n = 1362) and validated model (n = 682) was of good accuracy (ROC: 0.728, 95% CI: 0.670-0.785, p value 

    Matched MeSH terms: Antimalarials/therapeutic use
  17. Aziz MY, Hoffmann KJ, Ashton M
    PMID: 28863865 DOI: 10.1016/j.jchromb.2017.06.035
    PURPOSE: This study aimed to develop a sensitive, quantitative assay for the antimalarial piperaquine (PQ) and its metabolites M1 and M2 in human plasma.

    RESULTS: Analytes were gradiently separated on a C18 column and detected with a Sciex API 4000 MS/MS with an ESI source operated in the positive ion mode with deuterated PQ as internal standard. The response was linear in the range 3.9-2508nM with a runtime of 7.0min per sample. The method was applied to clinical samples from healthy volunteers.

    CONCLUSION: This LC-MS/MS method for the simultaneous quantitation of PQ and two of its metabolites in plasma may prove helpful for assessment of metabolite safety issues in vivo.

    Matched MeSH terms: Antimalarials/blood*; Antimalarials/metabolism; Antimalarials/pharmacokinetics; Antimalarials/chemistry
  18. Mphahlele MJ, Mmonwa MM, Choong YS
    Molecules, 2017 Jul 02;22(7).
    PMID: 28671598 DOI: 10.3390/molecules22071099
    A series of novel N-((2,5-diaryl-3-trifluoroacetyl)-1H-indol-7-yl)acetamides has been prepared via a successive and one-pot reaction sequence involving initial trifluoroacetic acid-mediated Beckmann rearrangement of the oximes derived from the 1-(2,5-diaryl-1H-indol-7-yl)ethanones, followed by trifluoroacetylation of the incipient N-(2,5-diaryl-1H-indol-7-yl)-acetamides with trifluoroacetic anhydride. The prepared compounds were evaluated for potential in vitro antiplasmodial properties. Preliminary results from antiplasmodial activity against the chloroquine-sensitive 3D7 strain of Plasmodium falciparum revealed that a combination of 2-(4-flurophenyl)- and 5-(4-fluorophenyl) or 2-(4-flurophenyl)- and 4-fluorostyryl groups in compounds 3(a,f) and 4(a,g), for example, is required for biological activity for both series of compounds. Their possible mode of action against the plasmodial parasite is explained theoretically through molecular docking of the most active compounds against the parasite lactate dehydrogenase (pLDH). These compounds were docked at the entrance of NAD+ in pLDH presumably hindering entry of lactate to cause the observed inhibition effect of pLDH. The four compounds were found to exhibit low toxicity against monkey kidney Vero cells at the highest concentrations tested.
    Matched MeSH terms: Antimalarials/chemical synthesis*; Antimalarials/pharmacology*; Antimalarials/chemistry
  19. Permala J, Tarning J, Nosten F, White NJ, Karlsson MO, Bergstrand M
    PMID: 28242661 DOI: 10.1128/AAC.02491-16
    Intermittent preventive treatment (IPT) is used to reduce malaria morbidity and mortality, especially in vulnerable groups such as children and pregnant women. IPT with the fixed dose combination of piperaquine (PQ) and dihydroartemisinin (DHA) is being evaluated as a potential mass treatment to control and eliminate artemisinin-resistant falciparum malaria. This study explored alternative DHA-PQ adult dosing regimens compared to the monthly adult dosing regimen currently being studied in clinical trials. A time-to-event model describing the concentration-effect relationship of preventive DHA-PQ administration was used to explore the potential clinical efficacy of once-weekly adult dosing regimens. Loading dose strategies were evaluated and the advantage of weekly dosing regimen was tested against different degrees of adherence. Assuming perfect adherence, three tablets weekly dosing regimen scenarios maintained malaria incidence of 0.2 to 0.3% per year compared to 2.1 to 2.6% for all monthly dosing regimen scenarios and 52% for the placebo. The three tablets weekly dosing regimen was also more forgiving (i.e., less sensitive to poor adherence), resulting in a predicted ∼4% malaria incidence per year compared to ∼8% for dosing regimen of two tablets weekly and ∼10% for monthly regimens (assuming 60% adherence and 35% interindividual variability). These results suggest that weekly dosing of DHA-PQ for malaria chemoprevention would improve treatment outcomes compared to monthly administration by lowering the incidence of malaria infections, reducing safety concerns about high PQ peak plasma concentrations and being more forgiving. In addition, weekly dosing is expected to reduce the selection pressure for PQ resistance.
    Matched MeSH terms: Antimalarials/administration & dosage; Antimalarials/pharmacokinetics; Antimalarials/therapeutic use*
  20. Thriemer K, Ley B, Bobogare A, Dysoley L, Alam MS, Pasaribu AP, et al.
    Malar J, 2017 04 05;16(1):141.
    PMID: 28381261 DOI: 10.1186/s12936-017-1784-1
    The delivery of safe and effective radical cure for Plasmodium vivax is one of the greatest challenges for achieving malaria elimination from the Asia-Pacific by 2030. During the annual meeting of the Asia Pacific Malaria Elimination Network Vivax Working Group in October 2016, a round table discussion was held to discuss the programmatic issues hindering the widespread use of primaquine (PQ) radical cure. Participants included 73 representatives from 16 partner countries and 33 institutional partners and other research institutes. In this meeting report, the key discussion points are presented and grouped into five themes: (i) current barriers for glucose-6-phosphate deficiency (G6PD) testing prior to PQ radical cure, (ii) necessary properties of G6PD tests for wide scale deployment, (iii) the promotion of G6PD testing, (iv) improving adherence to PQ regimens and (v) the challenges for future tafenoquine (TQ) roll out. Robust point of care (PoC) G6PD tests are needed, which are suitable and cost-effective for clinical settings with limited infrastructure. An affordable and competitive test price is needed, accompanied by sustainable funding for the product with appropriate training of healthcare staff, and robust quality control and assurance processes. In the absence of quantitative PoC G6PD tests, G6PD status can be gauged with qualitative diagnostics, however none of the available tests is currently sensitive enough to guide TQ treatment. TQ introduction will require overcoming additional challenges including the management of severely and intermediately G6PD deficient individuals. Robust strategies are needed to ensure that effective treatment practices can be deployed widely, and these should ensure that the caveats are outweighed by  the benefits of radical cure for both the patients and the community. Widespread access to quality controlled G6PD testing will be critical.
    Matched MeSH terms: Antimalarials/administration & dosage*; Antimalarials/adverse effects*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links