Displaying publications 61 - 80 of 353 in total

Abstract:
Sort:
  1. Suhaimi SMI, Muhamad NA, Bashir N, Mohd Jamil MK, Abdul Rahman MN
    Sensors (Basel), 2022 Jan 18;22(3).
    PMID: 35161466 DOI: 10.3390/s22030722
    Flashover on transmission line insulators is one of the major causes of line outages due to contamination from the environment or ageing. Power utility companies practicing predictive maintenance are currently exploring novel non-contact methods to monitor insulator surface discharge activities to prevent flashover. This paper presents an investigation on the UV pulse signals detected using UV pulse sensor due to the discharges on the insulator surfaces under varying contamination levels and insulator ages. Unaged and naturally aged insulators (0 to >20 years) were artificially contaminated (none, light to heavy contamination). The electrical stresses on the insulator surfaces were varied to generate varying discharge intensity levels on the surfaces of the insulator. The DC and harmonic components of UV pulse signals detected during surface discharges were recorded and analysed. Results show a positive correlation between the discharge intensity level of contaminated and aged transmission insulators with the DC and harmonic components of the UV pulse signals. Furthermore, the study revealed that under dry insulator surface conditions, insulator ageing has a more profound effect during discharges than contamination level. The findings from this study suggest that the use of UV pulse sensors to monitor UV pulse signals emitted during insulator surface discharges can be another novel non-contact method of monitoring transmission line insulator surface conditions.
    Matched MeSH terms: Electricity*
  2. Suhaimi NS, Md Din MF, Ishak MT, Abdul Rahman AR, Mohd Ariffin M, Hashim N', et al.
    Sci Rep, 2020 Dec 02;10(1):20984.
    PMID: 33268816 DOI: 10.1038/s41598-020-77810-8
    In this paper, the electrical, dielectric, Raman and small angle X-ray scattering (SAXS) structure behavior of disposed transformer oil in the presence of multi-walled carbon nanotube (MWCNT) were systematically tested to verify their versatility for preparing better alternative transformer oil in future. MWCNT nanofluids are prepared using a two-step method with concentrations ranging from 0.00 to 0.02 g/L. The test results reveal that 0.005 g/L concentration possesses the most optimum performance based on the electrical (AC breakdown and lightning impulse) and dielectric (permittivity, dissipation factor and resistivity) behavior. According to the trend of AC breakdown strength and lightning impulse pattern, there were 212.58% and 40.01% enhancement indicated for 0.005 g/L concentration compared to the disposed transformer oil. The presence of MWCNT also yielding to the decrement of dissipation factor, increased on permittivity and resistivity behavior of disposed transformer oil which reflected to the performance of electrical properties. Furthermore, it is found that these features correlated to the structural properties as systematically verify by Raman and SAXS analysis study.
    Matched MeSH terms: Electricity
  3. Sufyan M, Abd Rahim N, Tan C, Muhammad MA, Sheikh Raihan SR
    PLoS One, 2019;14(2):e0211642.
    PMID: 30763331 DOI: 10.1371/journal.pone.0211642
    The incessantly growing demand for electricity in today's world claims an efficient and reliable system of energy supply. Distributed energy resources such as diesel generators, wind energy and solar energy can be combined within a microgrid to provide energy to the consumers in a sustainable manner. In order to ensure more reliable and economical energy supply, battery storage system is integrated within the microgrid. In this article, operating cost of isolated microgrid is reduced by economic scheduling considering the optimal size of the battery. However, deep discharge shortens the lifetime of battery operation. Therefore, the real time battery operation cost is modeled considering the depth of discharge at each time interval. Moreover, the proposed economic scheduling with battery sizing is optimized using firefly algorithm (FA). The efficacy of FA is compared with other metaheuristic techniques in terms of performance measurement indices, which are cost of electricity and loss of power supply probability. The results show that the proposed technique reduces the cost of microgrid and attain optimal size of the battery.
    Matched MeSH terms: Electricity
  4. Srikanta Murthy A, Azis N, Jasni J, Othman ML, Mohd Yousof MF, Talib MA
    PLoS One, 2020;15(10):e0240368.
    PMID: 33035254 DOI: 10.1371/journal.pone.0240368
    This study presents an investigation on the effect of shield placement for mitigation of transient voltage in a 33/11 kV, 30 MVA transformer due to Standard Switching Impulse (SSI) and Oscillating Switching Impulse (OSI) surges. Generally, the winding and insulation in transformers could experience severe voltage stress due to the external impulses i.e. switching events. Hence, it is important to examine the voltage stress and identify the mitigation action i.e. shield placements in order to reduce the adverse effect to the transformer windings. First, the resistances, inductances, and capacitances (RLC) were calculated for disc type transformer in order to develop the winding RLC equivalent circuit. The SSI and OSI transient voltage waveforms were applied to the High Voltage (HV) winding whereby the transient voltages were simulated for each disc. The resulting voltage stresses were mitigated through different configurations of electrostatic shield placements. The resonant oscillations generated due to switching surges were analysed through initial voltage distribution. The analyses on the transient voltages of the transformer winding and standard error of the slope (SEb) reveal that the location of shield placement has a significant effect on the resonant switching voltages. The increment of the shield number in the windings does not guarantee optimize mitigation of the resonant switching transient voltages. It is found that the voltage stress along the windings is linear once a floating shield is placed between the HV and Low Voltage (LV) windings of the disc-type transformer under the SSI and OSI waveforms. These findings could assist the manufacturers with appropriate technical basis for mitigation of the transformer winding against the external transient switching overvoltage surges.
    Matched MeSH terms: Static Electricity
  5. Srikanta Murthy A, Azis N, Jasni J, Othman ML, Mohd Yousof MF, Talib MA
    PLoS One, 2020;15(8):e0236409.
    PMID: 32853253 DOI: 10.1371/journal.pone.0236409
    This paper proposes an alternative approach to extract transformer's winding parameters of resistance (R), inductance (L), capacitance (C) and conductance (G) based on Finite Element Method (FEM). The capacitance and conductance were computed based on Fast Multiple Method (FMM) and Method of Moment (MoM) through quasi-electrostatics approach. The AC resistances and inductances were computed based on MoM through quasi-magnetostatics approach. Maxwell's equations were used to compute the DC resistances and inductances. Based on the FEM computed parameters, the frequency response of the winding was obtained through the Bode plot function. The simulated frequency response by FEM model was compared with the simulated frequency response based on the Multi-conductor Transmission Line (MTL) model and the measured frequency response of a 33/11 kV, 30 MVA transformer. The statistical indices such as Root Mean Square Error (RMSE) and Absolute Sum of Logarithmic Error (ASLE) were used to analyze the performance of the proposed FEM model. It is found that the simulated frequency response by FEM model is quite close to measured frequency response at low and mid frequency regions as compared to simulated frequency response by MTL model based on RMSE and ASLE analysis.
    Matched MeSH terms: Static Electricity
  6. Soon, C.K., Zaini, Z., Mohd Ujang, A., Nagapan, S., Abdullah, A.H., Hasmori, M.F., et al.
    MyJurnal
    The building sector consumes about forty percent of world energy, making energy efficiency in existing buildings an important issue. This study has been undertaken to investigate energy consumption of a building that has been redesigned to incorporate energy efficient features. It was found that the introduction of energy efficient features has helped to achieve savings up to 46% of the total spent on energy particularly based on electricity bills.
    Matched MeSH terms: Electricity
  7. Solarin SA
    Environ Sci Pollut Res Int, 2019 Mar;26(9):8552-8574.
    PMID: 30706273 DOI: 10.1007/s11356-019-04225-y
    This paper examines the pattern of convergence in electricity intensity in a sample of 79 countries. We apply the residual augmented least squares regression to the convergence of energy intensity. This method has been used in the convergence of per capita energy consumption but not convergence of energy intensity. Furthermore, in contrast to the previous studies which mainly used the conventional beta convergence approach to examine conditional convergence, we use a beta convergence method that is capable of identifying the actual number of countries that contribute to conditional convergence. The sigma and gamma convergences of electricity intensity are also examined. In addition to the full sample of countries, we also examine convergence in African countries, Asian and Oceanic countries, American countries and European countries, separately. Convergences in OECD and non-OECD countries are also examined, separately. In the full sample, the results show convergence exists in 54% of the countries in the total sample. There is convergence in 65% of the African countries, 61% of the American countries, 43% of the Asian and Oceanic countries and 33% of the European countries. In terms of the regional classification, it is also observed that convergence exists for 58% of the non-OECD countries and 31% of the OECD countries. There is evidence for sigma convergence in all the blocs with the exception of European and non-OECD countries. With the exception of African countries, there is evidence for gamma convergence in all the countries and the various blocs. The policy implications of the results are discussed.
    Matched MeSH terms: Electricity*
  8. Smallbone A, Hanipah MR, Jia B, Scott T, Heslop J, Towell B, et al.
    Energy Fuels, 2020 Oct 15;34(10):12926-12939.
    PMID: 33122874 DOI: 10.1021/acs.energyfuels.0c01647
    Free-piston engine generators (FPEGs) have huge potential to be the principal energy conversion device for generating electricity from fuel as part of a hybrid-electric vehicle (EV) powertrain system. The principal advantages lay in the fact that they are theoretically more efficient, more compact, and more lightweight compared to other competing EV hybrid and range-extender solutions (internal combustion engines, rotary engines, fuel cells, etc.). However, this potential has yet to be realized. This article details a novel dual-piston FPEG configuration and presents the full layout of a system and provides technical evidence of a commercial FPEG system's likely size and weight. The work also presents the first results obtained from a project which set-out to realize an operational FPEG system in hardware through the development and testing of a flexible prototype test platform. The work presents the performance and control system characteristics, for a first of a kind system; these show great technical potential with stable and repeatable combustion events achieved with around 700 W per cylinder and 26% indicated efficiency.
    Matched MeSH terms: Electricity
  9. Sivagurunathan P, Kuppam C, Mudhoo A, Saratale GD, Kadier A, Zhen G, et al.
    Crit Rev Biotechnol, 2018 Sep;38(6):868-882.
    PMID: 29264932 DOI: 10.1080/07388551.2017.1416578
    This review provides the alternative routes towards the valorization of dark H2 fermentation effluents that are mainly rich in volatile fatty acids such as acetate and butyrate. Various enhancement and alternative routes such as photo fermentation, anaerobic digestion, utilization of microbial electrochemical systems, and algal system towards the generation of bioenergy and electricity and also for efficient organic matter utilization are highlighted. What is more, various integration schemes and two-stage fermentation for the possible scale up are reviewed. Moreover, recent progress for enhanced performance towards waste stabilization and overall utilization of useful and higher COD present in the organic source into value-added products are extensively discussed.
    Matched MeSH terms: Electricity
  10. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2018 Dec 14;121(24):241802.
    PMID: 30608761 DOI: 10.1103/PhysRevLett.121.241802
    Three of the most significant measured deviations from standard model predictions, the enhanced decay rate for B→D^{(*)}τν, hints of lepton universality violation in B→K^{(*)}ℓℓ decays, and the anomalous magnetic moment of the muon, can be explained by the existence of leptoquarks (LQs) with large couplings to third-generation quarks and masses at the TeV scale. The existence of these states can be probed at the LHC in high energy proton-proton collisions. A novel search is presented for pair production of LQs coupled to a top quark and a muon using data at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9  fb^{-1}, recorded by the CMS experiment. No deviation from the standard model prediction has been observed and scalar LQs decaying exclusively into tμ are excluded up to masses of 1420 GeV. The results of this search are combined with those from previous searches for LQ decays into tτ and bν, which excluded scalar LQs below masses of 900 and 1080 GeV. Vector LQs are excluded up to masses of 1190 GeV for all possible combinations of branching fractions to tμ, tτ and bν. With this analysis, all relevant couplings of LQs with an electric charge of -1/3 to third-generation quarks are probed for the first time.
    Matched MeSH terms: Electricity
  11. Silvarajoo S, Osman UM, Kamarudin KH, Razali MH, Yusoff HM, Bhat IUH, et al.
    Data Brief, 2020 Oct;32:106299.
    PMID: 32984485 DOI: 10.1016/j.dib.2020.106299
    One-pot synthetic method was adopted to prepare three isomers 4-(ortho-fluorophenyl)thiosemi- carbazide), 4-(meta-fluorophenyl)thiosemicarbazide and 4-(para-fluorophenyl)thiosemicarbazide. The products were obtained in ethanolic solution from a reaction between ortho, meta and para derivatives of fluorophenyl isothiocyanate and hydrazine hydrate. This work presents the theoretical Molecular Electrostatic Potential (MEP) and Highest Occupied Molecular Orbital-Lowest Unoccupied Molecular Orbital (HOMO-LUMO) computational data through Gaussview 5.0.9 and Gaussian09 software. Experimental Cole-cole plot for conductivity determination was also illustrated. The present data is important to manipulate the properties of compounds according to the position of a fluorine atom.
    Matched MeSH terms: Static Electricity
  12. Siddiquee S, Saallah S, Bohari NA, Ringgit G, Roslan J, Naher L, et al.
    Nanomaterials (Basel), 2021 Apr 28;11(5).
    PMID: 33924923 DOI: 10.3390/nano11051142
    The present study reported a facile method for the determination of melamine in milk powder products based on the aggregation of reactant-free 5 nm gold nanoparticles (AuNPs). The strong electrostatic attraction between the positively charged exocyclic amine groups present in the melamine molecule and the negatively charged ions bound to the AuNPs induced aggregation of the AuNPs, resulting in visible color changes that could be seen with the naked eye and monitored by ultraviolet-visible (UV-Vis) absorbance spectra. The method shows high sensitivity with detection limits of 1 × 10-9 M for visual detection and 1 × 10-11 M for UV-Vis analysis, which is far below the safety limit of melamine ingestion in infant formula (1 ppm = 7.9 × 10-6 M) and the detection limit acquired by most AuNP-based melamine detection methods. Good recoveries were obtained over the range of 94.7-95.5% with a relative standard deviation of mean recovery (RSD) ranging from 1.40 to 5.81. The method provides a simple, feasible, fast and real-time detection of melamine adulterants in infant formula by the naked eye, without the aid of advanced instruments.
    Matched MeSH terms: Static Electricity
  13. Shrestha R, Subedi DP, Gurung JP, Wong CS
    Sains Malaysiana, 2016;45:1689-1696.
    The development of a non-thermal plasma jet with a capillary configuration working at atmospheric pressure is reported
    in this paper. The plasma jet is powered by a power source with frequency of several kilohertz. The working gas is
    argon. The plasma obtained has been characterized by optical emission spectroscopic measurements and electrical
    measurements of the discharge using voltage and current probes. The electron temperature has been estimated by using
    the modified Boltzmann plot method utilizing the Ar 4p-4s transition. The electron temperatures at various positions
    along the plasma jet length have been obtained and it is found that the electron temperature decreases at position further
    from orifice. The electron density has been estimated from current and voltage measurements using the power balance
    method. The effects of gas flow rate, applied voltage and frequency on the characteristics of the plasma jet have also been
    investigated. The applications of the atmospheric pressure plasma jet (APPJ) developed to modify the surface properties
    of Polyethyleneterephthalate (PET) and polycarbonate (PC) have been tested. Our results showed that the atmospheric
    pressure non-thermal plasma jet can be effectively used to enhance the surface wettability and surface energy of the
    PET and PC. The plasma jet has also been tested for inactivation of prokaryotic cells (Escherichia coli, Staphylococcus
    aureus). In the case of E. coli, better than 4 log10 reduction can be achieved. The effect of plasma jet on the pH of cell
    culture medium has suggested that the plasma species, particularly the electrons, are solely responsible for the effect
    of inactivation of living cells.
    Matched MeSH terms: Electricity
  14. Shazmeen Daniar Shamsuddin, Nurlyana Omar, Koh, Meng-Hock
    MATEMATIKA, 2017;33(2):149-157.
    MyJurnal
    It has come to attention that Malaysia have been aiming to build its own
    nuclear power plant (NPP) for electricity generation in 2030 to diversify the national
    energy supply and resources. As part of the regulation to build a NPP, environmental
    risk assessment analysis which includes the atmospheric dispersion assessment has to
    be performed as required by the Malaysian Atomic Energy Licensing Board (AELB)
    prior to the commissioning process. The assessment is to investigate the dispersion of
    radioactive effluent from the NPP in the event of nuclear accident. This article will focus
    on current development of locally developed atmospheric dispersion modeling code
    based on Gaussian Plume model. The code is written in Fortran computer language
    and has been benchmarked to a readily available HotSpot software. The radionuclide
    release rate entering the Gaussian equation is approximated to the value found in the
    Fukushima NPP accident in 2011. Meteorological data of Mersing District, Johor of
    year 2013 is utilized for the calculations. The results show that the dispersion of radionuclide
    effluent can potentially affect areas around Johor Bahru district, Singapore
    and some parts of Riau when the wind direction blows from the North-northeast direction.
    The results from our code was found to be in good agreement with the one
    obtained from HotSpot, with less than 1% discrepancy between the two.
    Matched MeSH terms: Electricity
  15. Sharin Ab Ghani, Idris Mohd Yusoff
    MyJurnal
    As the lighting load constituted amount of power in electricity system, improving of efficiency in lighting technology would make a beneficial to consumer, energy provider and environment. Consequently, majority of home lighting manufacturers were competing each other by improving and claiming their product as the best energy efficient lighting product. Knowledge or exposure regarding to lighting technology especially on energy efficiency, power quality and economy are an important issues to give awareness to user before buy or use the lighting product. Therefore in this research study, three types of lighting product such as energy saving incandescent lighting, compact fluorescent lighting (CFL) and solid state lighting (LED) were compared. Comparative parameters were collected from data provided by lighting manufacturer and experimental data conducted in laboratory using power quality meter and lux meter. Hence, these study discussed in term of economy, power and light quality and energy efficiency of the tested lighting product. At the end of this study, the best home lighting technology is determined successfully.
    Matched MeSH terms: Electricity
  16. Shariffudin SS, Mamat MH, Rusop M
    J Nanosci Nanotechnol, 2012 Oct;12(10):8165-8.
    PMID: 23421195
    Transparent nanostructured ZnO thin films were successfully deposited using sol-gel spin coating method on a quartz substrate. The 0.4 M ZnO solution gel was prepared using zinc acetate dihydrate (Zn(CH3COO)22H2O) as the precursor, 2-methoxyethanol as the solvent and monoethanolamine (MEA) as the stabilizer. The electrical and optical properties dependencies on the annealing temperature of the nanostructured ZnO thin films were investigated. It was found that as the annealing temperature increased, the particle size, conductivity and the peak of the UV emission also increased.
    Matched MeSH terms: Electricity
  17. Sharifah Sakinah, Tuan Othman, Jasronita, Jasni, Mohd Nazim, Mohtar
    MyJurnal
    Lightning is a natural phenomenon that generates a high electric field during thunderstorm. It has been
    reported that lightning strikes amid storms can occur around 100 times per second. The atmospheric
    electric field is an imperative parameter during a thunderstorm. Therefore, monitoring the electric field
    and its parameters is the best way for local lightning forecast. The electric field monitoring data can
    validate the accuracy of weather prediction in a local area from meteorology department or by using
    equipment specially designed to measure this electric field that exists when the phenomenon of lightning occurs. In this paper, the relationship between lightning, air humidity and temperature is discussed to understand the post lightning effect on these electric parameters. Additionally, the characteristics of the parameters are observed and analysed.
    Matched MeSH terms: Electricity
  18. Shareef H, Mutlag AH, Mohamed A
    Comput Intell Neurosci, 2017;2017:1673864.
    PMID: 28702051 DOI: 10.1155/2017/1673864
    Many maximum power point tracking (MPPT) algorithms have been developed in recent years to maximize the produced PV energy. These algorithms are not sufficiently robust because of fast-changing environmental conditions, efficiency, accuracy at steady-state value, and dynamics of the tracking algorithm. Thus, this paper proposes a new random forest (RF) model to improve MPPT performance. The RF model has the ability to capture the nonlinear association of patterns between predictors, such as irradiance and temperature, to determine accurate maximum power point. A RF-based tracker is designed for 25 SolarTIFSTF-120P6 PV modules, with the capacity of 3 kW peak using two high-speed sensors. For this purpose, a complete PV system is modeled using 300,000 data samples and simulated using the MATLAB/SIMULINK package. The proposed RF-based MPPT is then tested under actual environmental conditions for 24 days to validate the accuracy and dynamic response. The response of the RF-based MPPT model is also compared with that of the artificial neural network and adaptive neurofuzzy inference system algorithms for further validation. The results show that the proposed MPPT technique gives significant improvement compared with that of other techniques. In addition, the RF model passes the Bland-Altman test, with more than 95 percent acceptability.
    Matched MeSH terms: Electricity*
  19. Shameli K, Bin Ahmad M, Jaffar Al-Mulla EA, Ibrahim NA, Shabanzadeh P, Rustaiyan A, et al.
    Molecules, 2012 Jul 16;17(7):8506-17.
    PMID: 22801364 DOI: 10.3390/molecules17078506
    Different biological methods are gaining recognition for the production of silver nanoparticles (Ag-NPs) due to their multiple applications. The use of plants in the green synthesis of nanoparticles emerges as a cost effective and eco-friendly approach. In this study the green biosynthesis of silver nanoparticles using Callicarpa maingayi stem bark extract has been reported. Characterizations of nanoparticles were done using different methods, which include; ultraviolet-visible spectroscopy (UV-Vis), powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray fluorescence (EDXF) spectrometry, zeta potential measurements and Fourier transform infrared (FT-IR) spectroscopy. UV-visible spectrum of the aqueous medium containing silver nanoparticles showed absorption peak at around 456 nm. The TEM study showed that mean diameter and standard deviation for the formation of silver nanoparticles were 12.40 ± 3.27 nm. The XRD study showed that the particles are crystalline in nature, with a face centered cubic (fcc) structure. The most needed outcome of this work will be the development of value added products from Callicarpa maingayi for biomedical and nanotechnology based industries.
    Matched MeSH terms: Static Electricity
  20. Shamala N., Faizal, A.H.
    Medicine & Health, 2018;13(2):195-201.
    MyJurnal
    Electrocardiographic abnormalities can be associated with acute pancreatitis. However, data regarding the actual causative factor still remains elusive. Many previous cases were reported on non-specific ST and T wave abnormalities concurrent with acute pancreatitis but rarely with an increasing trend of cardiac markers. We describe the case of a 70-year-old female who presented with one such conundrum. Our patient had typical presentation of acute pancreatitis but had dynamic ECG changes with markedly increased cardiac markers. Subsequently after initiation of treatment for acute pancreatitis and observation for the course of several days, the ECG returned to the baseline as pre admission. This substantiates the fact that acute pancreatitis can mimic both biochemical and electrical manifestation of an acute coronary syndrome. Thus, Emergency Physicians should consider acute pancreatitis as a possible diagnosis in patients who present with abnormal electrocardiograms.
    Matched MeSH terms: Electricity
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links