Displaying publications 81 - 100 of 296 in total

Abstract:
Sort:
  1. Subramani B, Subbannagounder S, Ramanathanpullai C, Palanivel S, Ramasamy R
    Exp Biol Med (Maywood), 2017 03;242(6):645-656.
    PMID: 28092181 DOI: 10.1177/1535370216688568
    Redox homeostasis plays a crucial role in the regulation of self-renewal and differentiation of stem cells. However, the behavioral actions of mesenchymal stem cells in redox imbalance state remain elusive. In the present study, the effect of redox imbalance that was induced by either hydrogen peroxide (H2O2) or ascorbic acid on human cardiac-resident (hC-MSCs) and non-resident (umbilical cord) mesenchymal stem cells (hUC-MSCs) was evaluated. Both cells were sensitive and responsive when exposed to either H2O2 or ascorbic acid at a concentration of 400 µmol/L. Ascorbic acid pre-treated cells remarkably ameliorated the reactive oxygen species level when treated with H2O2. The endogenous antioxidative enzyme gene (Sod1, Sod2, TRXR1 and Gpx1) expressions were escalated in both MSCs in response to reactive oxygen species elevation. In contrast, ascorbic acid pre-treated hUC-MSCs attenuated considerable anti-oxidative gene (TRXR1 and Gpx1) expressions, but not the hC-MSCs. Similarly, the cardiogenic gene (Nkx 2.5, Gata4, Mlc2a and β-MHC) and ion-channel gene ( IKDR, IKCa, Ito and INa.TTX) expressions were significantly increased in both MSCs on the oxidative state. On the contrary, reduced environment could not alter the ion-channel gene expression and negatively regulated the cardiogenic gene expressions except for troponin-1 in both cells. In conclusion, redox imbalance potently alters the cardiac-resident and non-resident MSCs stemness, cardiogenic, and ion-channel gene expressions. In comparison with cardiac-resident MSC, non-resident umbilical cord-MSC has great potential to tolerate the redox imbalance and positively respond to cardiac regeneration. Impact statement Human mesenchymal stem cells (h-MSCs) are highly promising candidates for tissue repair in cardiovascular diseases. However, the retention of cells in the infarcted area has been a major challenge due to its poor viability and/or low survival rate after transplantation. The regenerative potential of mesenchymal stem cells (MSCs) repudiate and enter into premature senescence via oxidative stress. Thus, various strategies have been attempted to improve the MSC survival in 'toxic' conditions. Similarly, we investigated the response of cardiac resident MSC (hC-MSCs) and non-resident MSCs against the oxidative stress induced by H2O2. Supplementation of ascorbic acid (AA) into MSCs culture profoundly rescued the stem cells from oxidative stress induced by H2O2. Our data showed that the pre-treatment of AA is able to inhibit the cell death and thus preserving the viability and differentiation potential of MSCs.
    Matched MeSH terms: Hydrogen Peroxide/pharmacology
  2. Mashitah, M.D., Masitah, H., Ramachandran, K.B.
    MyJurnal
    Streptococcus zooepidemicus (SZ) is an aerotolerant bacteria and its ability to survive under reactive oxidant raises the question of the existence of a defense system against oxidative stress. As a characteristic of lactic acid bacteria, Streptococcus lacks an ordinary anti-oxidative stress enzyme, catalases and an electron transport chain. Whether this bacterium resists oxidative stress prior to an exposure to a higher level of an oxidizing agent H2O2 in hyaluronic acid fermentation is not known. This paper describes that Streptococcus cells, once treated with lower concentrations of H2O2 (i.e. 0.25, 0.50 and 1.0 mM) at least, were prepared for a subsequent higher concentrations of H2O2 such as 20.5 and 100 mM. At low concentrations (i.e. 0.25, 0.50 and 1.0 mM), H2O2 was found to act as a stimulant for HA synthesis, but it became toxic if presented at a very high level (100 mM H2O2). The highest HA yield to glucose consumed (YHAtotal/glu) was 0.017 gg-1 for the cells pre-treated with 0 mM of H2O2, and then exposed to 20.5 mM H2O2. Thus, this implied that this bacteria might possess a defense mechanism against oxidative stress and that this system was inducible.
    Matched MeSH terms: Hydrogen Peroxide
  3. Mashitah MD, Masitah H, Ramachandran KB
    Med J Malaysia, 2004 May;59 Suppl B:59-60.
    PMID: 15468818
    Streptococcus zooepidemicus (SZ) is an aerotolerant bacteria and its ability to survive under reactive oxidant challenge raises the question of the existence of a defense system. Thus growth, hyaluronic acid (HA) and hydrogen peroxide (H2O2) production by SZ in the presence of increasing concentration of Mn2+ were studied. The results suggested that the tested strain supported growth and HA production in cultures treated with 1 and 10 mM of Mn2+ regardless of H2O2 presence in the medium. This showed that SZ have acquired elaborate defense mechanisms to scavenge oxygen toxicity and thus protect cells from direct and indirect effect of this radical. In contrast, cells treated with 25 mM Mn2+ were sensitive, in which, the HA production was reduced considerably. Thus showing that the oxygen scavenger systems of the cells may be fully saturated at this concentration.
    Matched MeSH terms: Hydrogen Peroxide/metabolism*
  4. Singa PK, Isa MH, Sivaprakash B, Ho YC, Lim JW, Rajamohan N
    Environ Res, 2023 Aug 15;231(Pt 2):116191.
    PMID: 37211185 DOI: 10.1016/j.envres.2023.116191
    Polycyclic aromatic hydrocharbons (PAHs) are a class of highly toxic pollutants that are highly detrimental to the ecosystem. Landfill leechate emanated from municipal solid waste are reported to constitute significant PAHs. In the present investigation, three Fenton proceses, namely conventional Fenton, photo-fenton and electro-fenton methods have been employed to treat landfill leehcate for removing PAHs from a waste dumpig yard. Response surface methodology (RSM) and artificial neural network (ANN) methodologies were adopted to optimize and validate the conditions for optimum oxidative removal of COD and PAHs. The statistical analysis results showed that all independent variables chosen in the study are reported to have significant influence of the removal effects with P-values <0.05. Sensitivity analysis by the developed ANN model showed that the pH had the highest significance of 1.89 in PAH removal when compared to the other parameters. However for COD removal, H2O2 had the highest relative importance of 1.15, followed by Fe2+ and pH. Under optimal treatment conditions, the photo-fenton and electro-fenton processes showed better removal of COD and PAH compared to the Fenton process. The photo-fenton and electro-fenton treatment processes removed 85.32% and 74.64% of COD and 93.25% and 81.65% of PAHs, respectively. Also the investigations revelaed the presence of 16 distinct PAH compunds and the removal percentage of each of these PAHs are also reported. The PAH treatment research studies are generally limited to the assay of removal of PAH and COD levels. In the present investigation, in addition to the treatment of landfill leachate, particle size distribution analysis and elemental characterization of the resultant iron sludge by FESEM and EDX are reported. It was revealed that elemental oxygen is present in highest percentage, followed by iron, sulphur, sodium, chlorine, carbon and potassium. However, iron percentage can be reduced by treating the Fenton-treated sample with NaOH.
    Matched MeSH terms: Hydrogen Peroxide/chemistry
  5. Ahmed SR, Sherazee M, Das P, Shalauddin M, Akhter S, Basirun WJ, et al.
    Biosens Bioelectron, 2024 Feb 15;246:115857.
    PMID: 38029708 DOI: 10.1016/j.bios.2023.115857
    This study unveils the electrochemically-enhanced nanozymatic activity exhibited by borophene during the reaction of 3,3',5,5'-tetramethylbenzidine (TMB) and H2O2. Herein, the surface of the pristine borophene was first modified with the addition of thiocyanate groups to improve hydroxyl radical (•OH) scavenging activity. Then, the oxidation reaction of TMB was accelerated under applied electrochemical potential. Both factors significantly improved the detection limit and drastically decreased the detection time. DPPH testing revealed that the radical scavenging nature of borophene was more than 70%, boosting its catalytic activity. In the presence of H2O2, borophene catalyzed the oxidation of TMB and produced a blue-colored solution that was linearly correlated with the concentration of H2O2 and allowed for the detection of H2O2 up to 38 nM. The present finding was further extended to nanozymatic detection of tetracyclines (TCs) using a target-specific aptamer, and the results were colorimetrically quantifiable up to 1 μM with a LOD value of 150 nM. Moreover, transferring the principles of the discussed detection method to form a portable and disposable paper-based system enabled the quantification of TCs up to 0.2 μM. All the sensing experiments in this study indicate that the nanozymatic activity of borophene has significantly improved under electrochemical potential compared to conventional nanozyme-based colorimetric detection. Hence, the present discovery of electrochemically-enhanced nanozymatic activity would be promising for various sensitive and time-dependent colorimetric sensor development initiatives in the future.
    Matched MeSH terms: Hydrogen Peroxide*
  6. Abdulmalek E, Arumugam M, Basri M, Rahman MB
    Int J Mol Sci, 2012;13(10):13140-9.
    PMID: 23202943 DOI: 10.3390/ijms131013140
    Herein, an efficient epoxidation of 1-nonene is described. In a simple epoxidation system, commercially available Novozym 435, an immobilized Candida antarctica lipase B, and hydrogen peroxide (H(2)O(2)) were utilized to facilitate the in situ oxidation of phenylacetic acid to the corresponding peroxy acid which then reacted with 1-nonene to give 1-nonene oxide with high yield and selectivity. The aliphatic terminal alkene was epoxidised efficiently in chloroform to give an excellent yield (97%-99%) under the optimum reaction conditions, including temperature (35 °C), initial H(2)O(2) concentration (30%), H(2)O(2) amount (4.4 mmol), H(2)O(2) addition rate (one step), acid amount (8.8 mmol), and stirring speed (250 rpm). Interestingly, the enzyme was stable under the single-step addition of H(2)O(2) with a catalytic activity of 190.0 Ug-1. The entire epoxidation process was carried out within 12 h using a conventional water bath shaker.
    Matched MeSH terms: Hydrogen Peroxide/metabolism*; Hydrogen Peroxide/chemistry
  7. Khandaker MM, Boyce AN, Osman N
    Plant Physiol Biochem, 2012 Apr;53:101-10.
    PMID: 22349652 DOI: 10.1016/j.plaphy.2012.01.016
    The present study represents the first report of the effect of hydrogen peroxide (H(2)O(2)) on the growth, development and quality of the wax apple fruit, a widely cultivated fruit tree in South East Asia. The wax apple trees were spray treated with 0, 5, 20 and 50 mM H(2)O(2) under field conditions. Photosynthetic rates, stomatal conductance, transpiration, chlorophyll and dry matter content of the leaves and total soluble solids and total sugar content of the fruits of wax apple (Syzygium samarangense, var. jambu madu) were significantly increased after treatment with 5 mM H(2)O(2). The application of 20 mM H(2)O(2) significantly reduced bud drop and enhanced fruit growth, resulting in larger fruit size, increased fruit set, fruit number, fruit biomass and yield compared to the control. In addition, the endogenous level of H(2)O(2) in wax apple leaves increased significantly with H(2)O(2) treatments. With regard to fruit quality, 20 mM H(2)O(2) treatment increased the K(+), anthocyanin and carotene contents of the fruits by 65%, 67%, and 41%, respectively. In addition, higher flavonoid, phenol and soluble protein content, sucrose phosphate synthase (SPS), phenylalanine ammonia lyase (PAL) and antioxidant activities were recorded in the treated fruits. There was a positive correlation between peel colour (hue) and TSS, between net photosynthesis and SPS activity and between phenol and flavonoid content with antioxidant activity in H(2)O(2)-treated fruits. It is concluded that spraying with 5 and 20 mM H(2)O(2) once a week produced better fruit growth, maximising the yield and quality of wax apple fruits under field conditions.
    Matched MeSH terms: Hydrogen Peroxide/pharmacology*
  8. Lim SJ, Oslan SN
    PeerJ, 2021;9:e11315.
    PMID: 34046253 DOI: 10.7717/peerj.11315
    Background: -amylases catalyze the endo-hydrolysis of -1,4-D-glycosidic bonds in starch into smaller moieties. While industrial processes are usually performed at harsh conditions, -amylases from mainly the bacteria, fungi and yeasts are preferred for their stabilities (thermal, pH and oxidative) and specificities (substrate and product). Microbial -amylases can be purified and characterized for industrial applications. While exploring novel enzymes with these properties in the nature is time-costly, the advancements in protein engineering techniques including rational design, directed evolution and others have privileged their modifications to exhibit industrially ideal traits. However, the commentary on the strategies and preferably mutated residues are lacking, hindering the design of new mutants especially for enhanced substrate specificity and oxidative stability. Thus, our review ensures wider accessibility of the previously reported experimental findings to facilitate the future engineering work.

    Survey methodology and objectives: A traditional review approach was taken to focus on the engineering of microbial -amylases to enhance industrially favoured characteristics. The action mechanisms of - and -amylases were compared to avoid any bias in the research background. This review aimed to discuss the advances in modifying microbial -amylases via protein engineering to achieve longer half-life in high temperature, improved resistance (acidic, alkaline and oxidative) and enhanced specificities (substrate and product). Captivating results were discussed in depth, including the extended half-life at 100C, pH 3.5 and 10, 1.8 M hydrogen peroxide as well as enhanced substrate (65.3%) and product (42.4%) specificities. These shed light to the future microbial -amylase engineering in achieving paramount biochemical traits ameliorations to apt in the industries.

    Conclusions: Microbial -amylases can be tailored for specific industrial applications through protein engineering (rational design and directed evolution). While the critical mutation points are dependent on respective enzymes, formation of disulfide bridge between cysteine residues after mutations is crucial for elevated thermostability. Amino acids conversion to basic residues was reported for enhanced acidic resistance while hydrophobic interaction resulted from mutated hydrophobic residues in carbohydrate-binding module or surface-binding sites is pivotal for improved substrate specificity. Substitution of oxidation-prone methionine residues with non-polar residues increases the enzyme oxidative stability. Hence, this review provides conceptual advances for the future microbial -amylases designs to exhibit industrially significant characteristics. However, more attention is needed to enhance substrate specificity and oxidative stability since they are least reported.

    Matched MeSH terms: Hydrogen Peroxide
  9. Nordin N, Ho LN, Ong SA, Ibrahim AH, Wong YS, Lee SL, et al.
    Environ Sci Pollut Res Int, 2017 Oct;24(29):23331-23340.
    PMID: 28840563 DOI: 10.1007/s11356-017-9964-7
    A novel sustainable hybrid system of photocatalytic fuel cell (PFC) and Fenton process is an alternative wastewater treatment technology for energy-saving and efficient treatment of organic pollutants. The electrons generated from PFC photoanode are used to produce H2O2 in the Fenton reactor and react with the in situ generation of Fe2+ from sacrificial iron for hydroxyl radical formation. In this study, the effect of different initial Amaranth dye concentrations on degradation and electricity generation were investigated. ZnO/Zn photoanode was prepared by anodizing method and characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). Results revealed that the maximum power density (9.53 mW/m2) and current density (0.0178 mA/m2) were achieved at 10 mg/L of Amaranth. The correlation between dye degradation, voltage output, and kinetic photocatalytic degradation were also investigated and discussed.
    Matched MeSH terms: Hydrogen Peroxide
  10. Nordin N, Ho LN, Ong SA, Ibrahim AH, Lee SL, Ong YP
    Chemosphere, 2019 Jan;214:614-622.
    PMID: 30292044 DOI: 10.1016/j.chemosphere.2018.09.144
    The hybrid system of photocatalytic fuel cell - peroxi-coagulation (PFC-PC) is a sustainable and green technology to degrade organic pollutants and generate electricity simultaneously. In this study, three different types of photocatalysts: TiO2, ZnO and α-Fe2O3 were immobilized respectively on carbon cloth (CC), and applied as photoanodes in the photocatalytic fuel cell of this hybrid system. Photocatalytic fuel cell was employed to drive a peroxi-coagulation process by generating the external voltage accompanying with degrading organic pollutants under UV light irradiation. The degradation efficiency of Amaranth dye and power output in the hybrid system of PFC-PC were evaluated by applying different photoanode materials fabricated in this study. In addition, the effect of light on the photocurrent of three different photoanode materials was investigated. In the absence of light, the reduction of photocurrent percentage was found to be 69.7%, 17.3% and 93.2% in TiO2/CC, ZnO/CC and α-Fe2O3/CC photoanodes, respectively. A maximum power density (1.17 mWcm-2) and degradation of dye (93.8%) at PFC reactor were achieved by using ZnO/CC as photoanode. However, the different photoanode materials at PFC showed insignificant difference in dye degradation trend in the PC reactor. Meanwhile, the degradation trend of Amaranth at PFC reactor was influenced by the recombination rate, electron mobility and band gap energy of photocatalyst among different photoanode materials.
    Matched MeSH terms: Hydrogen Peroxide
  11. Nordin N, Ho LN, Ong SA, Ibrahim AH, Abdul Rani AL, Lee SL, et al.
    Chemosphere, 2020 Apr;244:125459.
    PMID: 31790991 DOI: 10.1016/j.chemosphere.2019.125459
    The hybrid electrochemical system of photocatalytic fuel cell - peroxi-coagulation (PFC-PC) is a combined technology of advanced oxidation process (AOP) which involve the hydroxyl radical formation for simultaneous degradation of organic pollutant and electricity generation. The p-nitrosodimethylaniline (RNO) spin trapping technique was applied by analyzing the RNO bleaching performance to detect the OH at the PFC and PC reactors. The presence of UV light showed higher RNO bleaching rate at the PFC reactor (11.7%) with maximum power density (Pmax = 3.14 mW cm-2). Results revealed that the optimum of maximum power density was observed at iron plate size of 30 cm2. UV light became a limiting factor in the PFC system as a power source in the PFC-PC system. Meanwhile, iron plate plays an important role to supply the soluble Fe2+ ions by oxidation process and become a suitable catalyst for in-situ production of H2O2 and OH through the PC process to degrade the organic molecules.
    Matched MeSH terms: Hydrogen Peroxide/chemistry
  12. Alya Nadhira Nasron, Ninna Sakina Azman, Nor Syaidatul Syafiqah Mohd Rashid, Nur Rahimah Said
    MyJurnal
    Degradation of azo dyes by using advanced oxidation processes (AOPs) was conducted. In this approach, different AOPs, which are Fenton process and titanium dioxide (TiO2) catalyst, were examined and compared for the degradation of an azo dye (i.e., Congo red dye). The sample was tested under UV light and the experiment was conducted for 90 min with 15 min interval. The degradation rate of dye was determined using UV-Vis spectrophotometry. The effect of several parameters on the degradation process such as the concentration of metal ions (Fe2+, Cu2+, and Mn2+) as the catalyst in Fenton process, the concentration of hydrogen peroxide (H2O2), the mass of TiO2, and pH value of the dye solution were investigated. The initial Congo red concentration used for both techniques was 5 ppm. The results showed that the percentage degradation followed the sequence of H2O2/Fe2+/UV, H2O2/Cu2+/UV, H2O2/Mn2+/UV, and TiO2/UV. The best operating conditions for H2O2/Fe2+/UV were pH 3, 0.2 M concentration of H2O2, and 0.02 M concentration of metal ion in 15 min, which achieved 99.92% degradation of dye. The Fourier transform infrared (FTIR) spectrum showed the absence of azo bond (N=N) peak after degradation process, which indicates the successful cleavage of azo bond in the chemical structure of Congo red.
    Matched MeSH terms: Hydrogen Peroxide
  13. Akhmal Saadon S, Sathishkumar P, Mohd Yusoff AR, Hakim Wirzal MD, Rahmalan MT, Nur H
    Environ Technol, 2016 Aug;37(15):1875-82.
    PMID: 26732538 DOI: 10.1080/09593330.2015.1135989
    In this study, the zinc oxide (ZnO) layer was synthesised on the surface of Zn plates by three different techniques, i.e. electrolysis, hydrogen peroxide and heat treatment. The synthesised ZnO layers were characterised using scanning electron microscopy, X-ray diffraction, UV-visible diffuse reflectance and photoluminescence spectroscopy. The photocatalytic activity of the ZnO layer was further assessed against methylene blue (MB) degradation under UV irradiation. The photocatalytic degradation of MB was achieved up to 84%, 79% and 65% within 1 h for ZnO layers synthesised by electrolysis, heat and hydrogen peroxide treatment, respectively. The reusability results show that electrolysis and heat-treated ZnO layers have considerable photocatalytic stability. Furthermore, the results confirmed that the photocatalytic efficiency of ZnO was directly associated with the thickness and enlarged surface area of the layer. Finally, this study proved that the ZnO layers synthesised by electrolysis and heat treatment had shown better operational stability and reusability.
    Matched MeSH terms: Hydrogen Peroxide/chemistry*
  14. Abu Bakar NI, Chandren S, Attan N, Leaw WL, Nur H
    Front Chem, 2018;6:370.
    PMID: 30255010 DOI: 10.3389/fchem.2018.00370
    The demonstration of the structure-properties relationship of shape-dependent photocatalysts remains a challenge today. Herein, one-dimensional (1-D)-like titania (TiO2), as a model photocatalyst, has been synthesized under a strong magnetic field in the presence of a magnetically responsive liquid crystal as the structure-aligning agent to demonstrate the relationship between a well-aligned structure and its photocatalytic properties. The importance of the 1-D-like TiO2 and its relationship with the electronic structures that affect the electron-hole recombination and the photocatalytic activity need to be clarified. The synthesis of 1-D-like TiO2 with liquid crystal as the structure-aligning agent was carried out using the sol-gel method under a magnetic field (0.3 T). The mixture of liquid crystal, 4'-pentyl-4-biphenylcarbonitrile (5CB), tetra-n-butyl orthotitanate (TBOT), 2-propanol, and water, was subjected to slow hydrolysis under a magnetic field. The TiO2-5CB took a well-aligned whiskerlike shape when the reaction mixture was placed under the magnetic field, while irregularly shaped TiO2-5CB particles were formed when no magnetic field was applied. It shows that the strong interaction between 5CB and TBOT during the hydrolysis process under a magnetic field controls the shape of titania. The intensity of the emission peaks in the photoluminescence spectrum of 1-D-like TiO2-5CB was lowered compared with the TiO2-5CB synthesized without the magnetic field, suggesting the occurrence of electron transfer from 5CB to the 1-D-like TiO2-5CB during ultraviolet irradiation. Apart from that, direct current electrical conductivity and Hall effect studies showed that the 1-D-like TiO2 composite enhanced electron mobility. Thus, the recombination of electrons and holes was delayed due to the increase in electron mobility; hence, the photocatalytic activity of the 1-D-like TiO2 composite in the oxidation of styrene in the presence of aqueous hydrogen peroxide under UV irradiation was enhanced. This suggests that the 1-D-like shape of TiO2 composite plays an important role in its photocatalytic activity.
    Matched MeSH terms: Hydrogen Peroxide
  15. Ugusman A, Zakaria Z, Hui CK, Nordin NA
    PMID: 21496279 DOI: 10.1186/1472-6882-11-31
    Aqueous extract of Piper sarmentosum (AEPS) is known to possess antioxidant and anti-atherosclerotic activities but the mechanism responsible for it remains unclear. In early part of atherosclerosis, nuclear factor-kappa B (NF-κB) induces the expression of cellular adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1), intracellular adhesion molecule-1 (ICAM-1) and E-selectin. NADPH oxidase 4 (Nox4) is the predominant source of superoxide in the endothelial cells whereas superoxide dismutase 1 (SOD1), catalase (CAT) and glutathione peroxidase (GPx) are the antioxidant enzymes responsible for inactivating reactive oxygen species. The present study aimed to investigate the effects of AEPS on the gene expression of NF-κB, VCAM-1, ICAM-1, E-selectin, Nox4, SOD1, CAT and GPx in cultured human umbilical vein endothelial cells (HUVECs).
    Matched MeSH terms: Hydrogen Peroxide
  16. Mansor NI, Ling KH, Rosli R, Hassan Z, Adenan MI, Nordin N
    J Alzheimers Dis, 2023;94(s1):S21-S44.
    PMID: 37334592 DOI: 10.3233/JAD-221233
    BACKGROUND: Centella asiatica (L.) (C. asiatica) is commonly known in South East and South East Asia communities for its nutritional and medicinal benefits. Besides being traditionally used to enhance memory and accelerate wound healing, its phytochemicals have been extensively documented for their neuroprotective, neuroregenerative, and antioxidant properties.

    OBJECTIVE: The present study aims to investigate the effects of a standardized raw extract of C. asiatica (RECA) on hydrogen peroxide (H2O2)-induced oxidative stress and apoptotic death in neural-like cells derived from mouse embryonic stem (ES) cell line.

    METHODS: A transgenic mouse ES cell (46C) was differentiated into neural-like cells using 4-/4+ protocol with addition of all-trans retinoic acid. These cells were then exposed to H2O2 for 24 h. The effects of RECA on H2O2-induced neural-like cells were assessed through cell viability, apoptosis, and reactive oxygen species (ROS) assays, as well as neurite length measurement. The gene expression levels of neuronal-specific and antioxidant markers were assessed by RT-qPCR analysis.

    RESULTS: Pre-treatment with H2O2 for 24 hours, in a dose-dependent manner, damaged neural-like cells as marked by a decrease in cell viability, substantial increase in intracellular ROS accumulation, and increase in apoptotic rate compared to untreated cells. These cells were used to treat with RECA. Treatment with RECA for 48 h remarkably restored cell survival and promoted neurite outgrowth in the H2O2- damaged neurons by increasing cell viability and decreasing ROS activity. RT-qPCR analysis revealed that RECA upregulated the level of antioxidant genes such as thioredoxin-1 (Trx-1) and heme oxygenase-1 (HO-1) of treated cells, as well as the expression level of neuronal-specific markers such as Tuj1 and MAP2 genes, suggesting their contribution in neuritogenic effect.

    CONCLUSION: Our findings indicate that RECA promotes neuroregenerative effects and exhibits antioxidant properties, suggesting a valuable synergistic activity of its phytochemical constituents, thus, making the extract a promising candidate in preventing or treating oxidative stress-associated Alzheimer's disease.

    Matched MeSH terms: Hydrogen Peroxide/toxicity
  17. Razinah Sharif, Ahmad Rohi Ghazali, Nor Fadilah Rajab
    MyJurnal
    DNA damaging effect of the salted and fermented food products (salted fishes, dried shrimps and shrimp pastes) collected from three different locations in Malacca namely Pantai Puteri, Batang Tiga and Kelemak on the DNA of the Chang liver cells were evaluated via Alkaline Comet Assay. Treatment at 62.5 mg/ml following 24 hours of incubation was used based on the preliminary cytotoxicity data. Percentage of damage to the DNA was calculated using software for scoring based on the tail moment and tail intensity (severity of the DNA damage). Hydrogen peroxide was used as positive control at 0.1 mM following 30 minutes of incubation in 4 C. The results showed that the methanol extracts of shrimp pastes and salted fish from Pantai Puteri, exhibited a higher DNA damage (shrimp pastes - TM - 8.33 ± 2.19; TI - 31.67 ± 5.84, salted fishes - TM - 2.25 ± 0.86; TI - 9.25 ± 1.55) and were expressed as (shrimp pastes) 56.66 ± 8.74% of DNA damage and methanol salted fish extracts from the same location showed 13.00 ± 2.84% of the DNA damage on Chang liver cells compared to the other extracts. Values for methanol extract of shrimp pastes from Pantai Puteri were comparable to the positive control - Hydrogen peroxide (TM- 9.50 ± 1.50; TI - 30.50 ± 2.50). On the other hand, aqueous salted fishes extract from Pantai Puteri (TM - 1.33 ± 0.42; TI - 8.67 ± 2.42) and shrimp pastes extracts from Kelemak (methanol extract - TM -1.75 ± 0.15; TI -7.50 ± 0.50, aqueous extract - TM - 1.00 ± 0.00; TI - 5.00 ± 0.00) showed slightly high value for tail moment and tail intensity as compared to negative control (TM - 0.29 ± 0.05; TI - 2.50 ± 0.29). Values for methanol extracts of shrimp pastes from Pantai Puteri were comparable to the positive control (TM- 9.50 ± 1.50; TI - 30.50 ± 2.50). In conclusion, our results demonstrate genotoxic damage induced by few salted and fermented food extracts in Chang liver cell.
    Matched MeSH terms: Hydrogen Peroxide
  18. Abba Y, Hassim H, Hamzah H, Ibrahim OE, Mohd Lila MA, Noordin MM
    Microb Pathog, 2017 Mar;104:17-27.
    PMID: 28062291 DOI: 10.1016/j.micpath.2017.01.003
    Boid inclusion body disease (BIBD) is a viral disease of boid snakes believed to be caused by reptarenavirus belonging to the family Arenaviridae. Unlike most mammalian arenaviruses, the reservoir host for reptarenavirus is still unknown. In this study, the pathological responses were evaluated in a mouse model for a period of 28 days. Blood and tissue samples (lung, liver, spleen, heart, kidney and brain) were collected for evaluation of hematology, biochemistry, histopathology and oxidative enzyme levels at six time points (1, 3, 7, 14, 21 and 28 days), after viral infection (2.0 × 10(6) pfu/mL) in the infected and normal saline in the control groups. An initial increase (p hydrogen peroxide, total antioxidant capacity (TAC), superoxide dismutase (SOD) activity and catalase activity (CAT) were frequently observed on different days in the infected group. The MDA activity was increased (p 
    Matched MeSH terms: Hydrogen Peroxide/metabolism
  19. Makpol S, Abidin AZ, Sairin K, Mazlan M, Top GM, Ngah WZ
    Oxid Med Cell Longev, 2010 Jan-Feb;3(1):35-43.
    PMID: 20716926 DOI: 10.4161/oxim.3.1.9940
    The effects of palm gamma-tocotrienol (GGT) on oxidative stress-induced cellular ageing was investigated in normal human skin fibroblast cell lines derived from different age groups; young (21-year-old, YF), middle (40-year-old, MF) and old (68-year-old, OF). Fibroblast cells were treated with gamma-tocotrienol for 24 hours before or after incubation with IC50 dose of H2O2 for 2 hours. Changes in cell viability, telomere length and telomerase activity were assessed using the MTS assay (Promega, USA), Southern blot analysis and telomere repeat amplification protocol respectively. Results showed that treatment with different concentrations of gamma-tocotrienol increased fibroblasts viability with optimum dose of 80 microM for YF and 40 microM for both MF and OF. At higher concentrations, gamma-tocotrienol treatment caused marked decrease in cell viability with IC50 value of 200 microM (YF), 300 microM (MF) and 100 microM (OF). Exposure to H2O2 decreased cell viability in dose dependent manner, shortened telomere length and reduced telomerase activity in all age groups. The IC50 of H2O2 was found to be; YF (700 microM), MF (400 microM) and OF (100 microM). Results showed that viability increased significantly (p < 0.05) when cells were treated with 80 microM and 40 microM gamma-tocotrienol prior or after H2O2-induced oxidative stress in all age groups. In YF and OF, pretreatment with gamma-tocotrienol prevented shortening of telomere length and reduction in telomerase activity. In MF, telomerase activity increased while no changes in telomere length was observed. However, post-treatment of gamma-tocotrienol did not exert any significant effects on telomere length and telomerase activity. Thus, these data suggest that gamma-tocotrienol protects against oxidative stress-induced cellular ageing by modulating the telomere length possibly via telomerase.
    Matched MeSH terms: Hydrogen Peroxide/pharmacology
  20. Zainuddin A, Makpol S, Chua KH, Abdul Rahim N, Yusof YA, Ngah WZ
    Med J Malaysia, 2008 Jul;63 Suppl A:73-4.
    PMID: 19024990
    Validation of housekeeping gene is important for accurate quantitation of RNA in real time RT-PCR technique. The purpose of this study was to determine the validity of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as a housekeeping gene for quantitative real time RT-PCR assessment in human skin fibroblast senescent model. The cells were divided into different treatment groups; young (passage 4), senescent (passage 30), treatment with H2O2 and treatment with A-tocotrienol prior to H2O2 treatment. Our results showed that the expression level of GAPDH was constant with different treatment groups. Therefore, we concluded that GAPDH was suitable to be used as housekeeping gene in human skin fibroblast senescent model.
    Matched MeSH terms: Hydrogen Peroxide
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links