METHODS: Thirty-five male rabbits of New Zealand strain were randomly assigned to seven groups. For 12 weeks, group CH was fed 1% cholesterol diet only; group C1 was fed 1% cholesterol diet and 0.50 ml/kg/day B. angulata WF juice; group C2 was fed 1% cholesterol diet and 1.00 ml/kg/day B. angulata WF juice; group C3 was fed 1% cholesterol diet and 1.50 ml/kg/day B. angulata WF juice; group N was fed standard pellet only; group N1 was fed standard pellet and 0.50 ml/kg/day B. angulata WF juice; and group N2 was fed standard pellet and 1.00 ml/kg/day B. angulata WF juice.
RESULTS: The three doses reduced the formation of MDA and enhanced the expression of endogenous antioxidant enzymes. The highest dose used (1.50 ml/kg/day) was, however, seen as the most potent.
CONCLUSION: Higher doses of B. angulata juice exerted better antioxidant activity.
RESULTS: Three acylated analogues were produced: quercetin 4'-oleate (C33H42O8), quercetin 3',4'-dioleate (C51H74O9) and quercetin 7,3',4'-trioleate (C69H106O10). Their identities were confirmed with UPLC-ESI-MS and (1)H NMR analyses. The effects of temperature, duration and molar ratio of substrates on the bioconversion yields varied across conditions. The regioselectivity of the acylated quercetin analogues was affected by the molar ratio of substrates. TLC showed the acylated analogues had higher lipophilicity (152% increase) compared to quercetin. Partition coefficient (log P) of quercetin 4'-oleate was higher than those of quercetin and oleic acid. Quercetin 4'-oleate was also stable over 28 days of storage.
CONCLUSIONS: Quercetin oleate esters with enhanced lipophilicity can be produced via lipase-catalyzed reaction using C. antarctica lipase B to be used in topical applications.
METHODS: In this study, the metabolic responses of C. glabrata under acetate growth condition was explored using high-throughput transcriptomic and proteomic approaches.
RESULTS: Collectively, a total of 1482 transcripts (26.96%) and 242 proteins (24.69%) were significantly up- or down-regulated. Both transcriptome and proteome data revealed that the regulation of alternative carbon metabolism in C. glabrata resembled other fungal pathogens such as Candida albicans and Cryptococcus neoformans, with up-regulation of many proteins and transcripts from the glyoxylate cycle and gluconeogenesis, namely isocitrate lyase (ICL1), malate synthase (MLS1), phosphoenolpyruvate carboxykinase (PCK1) and fructose 1,6-biphosphatase (FBP1). In the absence of glucose, C. glabrata shifted its metabolism from glucose catabolism to anabolism of glucose intermediates from the available carbon source. This observation essentially suggests that the glyoxylate cycle and gluconeogenesis are potentially critical for the survival of phagocytosed C. glabrata within the glucose-deficient macrophages.
CONCLUSION: Here, we presented the first global metabolic responses of C. glabrata to alternative carbon source using transcriptomic and proteomic approaches. These findings implicated that reprogramming of the alternative carbon metabolism during glucose deprivation could enhance the survival and persistence of C. glabrata within the host.