Displaying publications 81 - 100 of 141 in total

Abstract:
Sort:
  1. Aljuboori AH, Idris A, Abdullah N, Mohamad R
    Bioresour Technol, 2013 Jan;127:489-93.
    PMID: 23159465 DOI: 10.1016/j.biortech.2012.09.016
    The production and characterization of a bioflocculant, IH-7, by Aspergillus flavus was investigated. About 0.4 g of purified bioflocculant with an average molecular weight of 2.574 × 10(4)Da could be obtained from 1L of fermentation medium. The bioflocculant mainly consisted of protein (28.5%) and sugar (69.7%), including 40% of neutral sugar, 2.48% of uronic acid and 1.8% amino sugar. The neutral sugar components are sucrose, lactose, glucose, xylose, galactose, mannose and fructose at a molar ratio of 2.4:4.4:4.1:5.8:9.9:0.8:3.1. Fourier-transform infrared spectroscopy analysis revealed that purified IH-7 contained hydroxyl, amide, carboxyl and methoxyl groups. The elemental analysis of purified IH-7 showed that the weight fractions of the elements C, H, O, N and S were 29.9%, 4.8%, 34.7%, 3.3%, and 2.0%, respectively. IH-7 had good flocculating rate in kaolin suspension without cation addition and stable over wide range of pH and temperature.
    Matched MeSH terms: Sucrose/metabolism
  2. Motshakeri M, Ebrahimi M, Goh YM, Matanjun P, Mohamed S
    J Sci Food Agric, 2013 May;93(7):1772-8.
    PMID: 23208488 DOI: 10.1002/jsfa.5971
    BACKGROUND: Sargassum polycystum, a brown seaweed, contains various nutrients and bioactive compounds that have antioxidant and healing properties. The research hypothesises that antioxidants and pigments in dietary S. polycystum extracts can improve insulin sensitivity, blood sugar levels and blood lipid levels in a rat model of type 2 diabetes. The diabetes was induced by a high-sugar, high-fat diet for 16 weeks to enhance insulin resistance, followed by a low-dose intraperitoneal injection of streptozotocin (35 mg kg(-1) body weight). The doses of S. polycystum tested on diabetic rats were 150 and 300 mg kg(-1) body weight for the ethanolic extract or 150 and 300 mg kg(-1) for the water extract. Normal rats, untreated diabetic and metformin-treated diabetic rats (n = 6) were used as control.

    RESULTS: Both doses of the alcohol extract of S. polycystum and the 300 mg kg(-1) water extract, significantly reduced blood glucose and glycosylated haemoglobin (HbA1C ) levels. Serum total cholesterol, triglyceride levels and plasma atherogenic index were significantly decreased after 22 days treatment in all seaweed groups. Unlike metformin, S. polycystum did not significantly change plasma insulin in the rats, but increased the response to insulin.

    CONCLUSION: The consumption of either ethanolic or water extracts of S. polycystum dose dependently reduced dyslipidaemia in type 2 diabetic rats. S. polycystum is a potential insulin sensitiser, for a comestible complementary therapy in the management of type 2 diabetes which can help reduce atherogenic risk.

    Matched MeSH terms: Dietary Sucrose/adverse effects
  3. Loh DA, Moy FM, Zaharan NL, Jalaludin MY, Mohamed Z
    Pediatr Obes, 2017 02;12(1):e1-e5.
    PMID: 26843446 DOI: 10.1111/ijpo.12108
    BACKGROUND: Investigations on sugar-sweetened beverage (SSB) intake and cardiometabolic risks among Asians are scant.

    OBJECTIVES: This study aimed to examine associations between SSB intake and cardiometabolic risks among Malaysian adolescents.

    METHODS: Anthropometric data, blood pressure (BP), fasting blood glucose (FBG), lipid profiles and insulin levels measured involved 873 adolescents (aged 13 years). SSB intake, dietary patterns and physical activity level (PAL) were self-reported.

    RESULTS: Mean SSB consumption was 177.5 mL day-1 with significant differences among ethnicities (Malay, Chinese, Indians and Others) (p 

    Matched MeSH terms: Dietary Sucrose/adverse effects*
  4. Mohd Hafiz Arzmi
    MyJurnal
    A balanced oral microbiome is essential in maintaining a healthy oral cavity. Oral microbiome comprises of var-ious microorganisms that belong to different kingdoms, including bacteria (bacteriome) and fungal (mycobiome). Multiple factors have been shown in oral carcinogenesis including alcohol consumption, tobacco smoking, betel nut chewing and microbial infections. Since the oral cavity comprises of various microbial kingdoms, thus, in-ter-kingdom interactions are suggested in promoting oral carcinogenesis. Dysbiosis, which is defined as imbalance inter-kingdom microbiome, alone may not cause oral carcinogenesis; thus, it is suggested that nutritional factor may also play a vital role in this disease development. A recent study has shown that sucrose consumption can induce the production of glucosyltransferases (gtfs) by Streptococcus mutans which lead to the increasing attachment of Candida albicans in polymicrobial biofilms form. The yeast has been reported to be potentially involved in oral carcinogenesis, particularly in the immunocompromised patient. This is due to the inflammation that is caused by candidal infection, which increases pro-inflammatory cytokines such as interleukin-6, interleukin-8 and interleu-kin-10, that have been linked to oral carcinogenesis. However, further study is needed to conform to the claim. In addition, over-consumption of alcoholic beverages has also been related to carcinogenesis which the ethanol has been reported to be converted into acetaldehyde by C. albicans using acetaldehyde dehydrogenases enzymes. In Malaysia, oral cancer has also been related to the consumption of cured and salted fish, which mostly consumed by the Chinese ethnics. However, its relationship to oral microbiome remains unclear. In conclusion, oral microbiome and nutrition may have a role in oral carcinogenesis; however, further study is needed to elucidate the role of both factors in oral cancer development.
    Matched MeSH terms: Sucrose
  5. Noor Illi Mohamad Puad, Muhammad Alif Sarji, Nur Alia M. Fathil, Muhammad Yusuf Abduh
    MyJurnal
    Citrus is one of the major commodities in many countries including Malaysia.
    However, production of citrus including Citrus suhuiensis (C. suhuiensis) is declining due to
    diseases and inability to withstand low temperatures. Plant cultures such as cell suspension have the
    potential in propagating disease-free and healthy Citrus fruits with value-added characteristics.
    However, studies related to C. suhuiensis is still scarce. Therefore, the growth kinetics of C.
    suhuiensis cell suspension culture was studied. Friable callus of C. suhuiensis which was induced
    from seeds was inoculated into MS medium with 30 g/L sucrose, 0.5 g/L malt extract and 2.0 mg/L
    2, 4-D for the cell suspension initiation. Several batch experiments using a few types of sugars
    (sucrose, glucose and fructose) were carried out. The cell dry weight (CDW) of C. suhuiensis was
    recorded for 30 days of culture period and residual sugars in the medium were analyzed using
    HPLC. Cells grown in 30 g/L sucrose achieved the highest CDW (9.559 g/L) with µmax equals to
    0.00512/h, compared to glucose and fructose. In addition, sucrose is the preferred carbon source
    with the highest uptake rate (0.213 g/L·h). Cells completely hydrolyzed sucrose into glucose and
    fructose after 5 days of inoculation. All sugars were completely utilized by C. suhuiensis cells after
    25 days. The kinetic growth parameters determined from batch experiments were then used for
    model simulation and verification in MATHCAD 15. After adjustments and refinement to the
    selected kinetic parameters, the model has fairly described and predicted the growth and sugars
    profile of C. suhuiensis cells. The proposed model can be used to predict sucrose hydrolysis, glucose
    and fructose formation from sucrose and their consumption by plant cells and also for larger scale
    of growth.
    Matched MeSH terms: Sucrose
  6. Abdul Razak F, Baharuddin BA, Akbar EFM, Norizan AH, Ibrahim NF, Musa MY
    Arch Oral Biol, 2017 Aug;80:180-184.
    PMID: 28448807 DOI: 10.1016/j.archoralbio.2017.04.014
    OBJECTIVE: Compact-structured oral biofilm accumulates acids that upon prolonged exposure to tooth surface, causes demineralisation of enamel. This study aimed to assess the effect of alternative sweeteners Equal Stevia(®), Tropicana Slim(®), Pal Sweet(®) and xylitol on the matrix-forming activity of plaque biofilm at both the early and established stages of formation.

    METHODS: Saliva-coated glass beads (sGB) were used as substratum for the adhesion of a mixed-bacterial suspension of Streptococcus mutans, Streptococcus sanguinis and Streptococcus mitis. Biofilms formed on sGB at 3h and 24h represented the early and established-plaque models. The biofilms were exposed to three doses of the sweeteners (10%), introduced at three intervals to simulate the exposure of dental plaque to sugar during three consecutive food intakes. The treated sGB were (i) examined under the SEM and (ii) collected for turbidity reading. The absorbance indicated the amount of plaque mass produced. Analysis was performed comparative to sucrose as control.

    RESULTS: Higher rate of bacterial adherence was determined during the early compared to established phases of formation. Comparative to the sweeteners, sucrose showed a 40% increase in bacterial adherence and produced 70% more plaque-mass. Bacterial counts and SEM micrographs exhibited absence of matrix in all the sweetener-treated biofilms at the early phase of formation. At the established phase, presence of matrix was detected but at significantly lower degree compared to sucrose (p<0.05).

    CONCLUSION: Alternatives sweeteners promoted the formation of oral biofilm with lighter mass and lower bacterial adherence. Hence, suggesting alternative sweeteners as potential antiplaque agents.

    Matched MeSH terms: Sucrose
  7. Nadzirah, K.Z., Zainal, S., Noriham, A., Normah, I., Siti Roha, A.M., Nadya, H.
    MyJurnal
    The aim of this study is to determine colour changes during storage and physico- chemical properties of peel, core and crown extracts of pineapple variety N36 for maturity indices of 1, 2 and 3. The L* (lightness), a* (redness) and b* (yellowness) values for peels increased significantly (p ≤ 0.05) at each maturity stage during seven days storage. pH of pineapple peel, core and crown extracts were in the range of 3.24 to 3.84. The titratable acidity, percentage of pulp and Total Soluble Solid (TSS) of pineapple peel, core and crown extracts were in the range of 0.16 to 0.36%, 1.37 to 2.91% and 1.4 to 5.3˚Brix, respectively. Fructose and glucose contents were significantly highest (p ≤ 0.05) in pineapple core extract followed by pineapple peel extract and pineapple crown extract for maturity index 2. Significant difference (p ≤ 0.05) was found in sucrose content between pineapple core and peel extracts with 8.92% and 3.87%, respectively for maturity index 3. However, sucrose was not detected in pineapple crown extract. Pineapple core extract was significantly higher (p ≤ 0.05) amount of total sugar content compared to pineapple peel and crown extracts for all maturity indices.
    Matched MeSH terms: Sucrose
  8. Siti Roha, A.M., Zainal, S., Noriham, A., Nadzirah, K.Z.
    MyJurnal
    Pineapple waste is a by-product resulting from canning processing of pineapple that produce about 35% of fruit waste and lead to serious environmental pollution. Pineapple waste contains valuable nutrient components of simple sugar such as sucrose, glucose and fructose. Analysis of sugar content is important for further processing such as fermentation. The aim of this study was to determine the amount of sugar in different parts of pineapple waste (peel, core and crown) from variety N36. The selected pineapple waste for maturity indices 1, 2 and 3 was cut into small pieces before crushed in a food processor. The crushed waste was then filtered through muslin cloth followed by membrane filter 0.45μm to produce pineapple waste extract. Sugar content was determined using High Performance Liquid Chromatography. It was found that fructose content was significantly higher in core (2.24%) followed by peel (2.04%) and crown (0.87%). It was also found that glucose content was significantly higher in core (2.56%) followed by peel (2.18%) and crown (0.53%). Significant difference (p < 0.05) was found for sucrose content between pineapple core and peel extract with the value of 8.92% and 3.87%, respectively. However, sucrose was not detected in pineapple crown. It means that pineapple core extract had the highest values of fructose, glucose and sucrose compared to the other parts of pineapple waste extract. Besides, it was found that sucrose content was significantly higher in pineapple core for index 3 as compared to indices 1 and 2. Glucose and fructose was significantly higher in pineapple core for index 2 compared to indices 1 and 3.
    Matched MeSH terms: Sucrose
  9. Li Tian, Xiao-yun Huang, Qiang-sheng Wu, Nasrullah
    Sains Malaysiana, 2017;46:1687-1691.
    Arbuscular mycorrhizal fungi (AMF) actively colonize plant roots and thus enhance plant growth through different mechanisms. In the present study, trifoliate orange (Poncirus trifoliata) seedlings inoculated with Diversispora versiformis were subjected to 0 and 0.2 mmol/L sodium nitroprusside (SNP, a nitric oxide donor) treatments. After eight weeks, exogenous SNP considerably increased root mycorrhizal colonization by 25%, showing a positive stimulating effect of NO on mycorrhizal formation. Mycorrhizal inoculation significantly increased plant growth performance (height, stem diameter, leaf number and shoot and root dry weight) and root traits (length, projected area, surface area, volume and number of 2nd and 3rd order lateral roots) than non-mycorrhizal treatment and NO (exogenous SNP treatment) heavily strengthened the mycorrhizal effects. Moreover, NO and mycorrhization induced more fine root (0-0.5 cm) formation. There was an opposite changed trend in root sucrose and leaf and root glucose contents by SNP in AMF versus non-AMF seedlings. All these results implied that NO plays important roles in mycorrhizal formation and development and also accelerates mycorrhizal effects on plant growth and root development of trifoliate orange.
    Matched MeSH terms: Sucrose
  10. Asmah Awal, Nazatul Asikin Muda
    MyJurnal
    In this paper, a micropropagation protocol of sugar palm (Arenga pinnata Wurmb Merr) through callogenesis and somatic embryogenesis was examined. Callus induction frequency and somatic embryogenesis response were dependent on plant growth regulators (PGRs) and genotype. Semi-compact and compact embryogenic calluses were induced from excised immature zygotic embryo (IZE) cultured on semi-solid MS (Murashige & Skoog, 1962) medium supplemented with various concentration and combination of 2,4-dichlorophenoxyacetic acid (2,4-D) and 6-benzyl aminopurine acid (BAP). MS medium supplemented with 0.4 mg/L 2,4-D and 0.5 mg/L BAP was found optimum to induce 100% rate of embryogenic calluses and maximum degree of callus formation after 8 and 12 weeks of culture. The incorporation of increased sucrose concentration (60.0 g/L) and 2.0 g/L casein hydrolysate (CH) to the culture medium with similar PGRs composition enhanced the induction of globular somatic embryos (SEs), while addition of silver nitrate (AgNO3) produced SEs of different stages. SEs maturated in MS medium containing 1.0 mg/L BAP and 1.0 mg/L naphthalene-acetic acid (NAA) formed cotyledon-stage embryos. Clonal roots regeneration was obtained on half-strength MS devoid of PGRs after 4 months of culture. Frequent subcultures increased embryogenesis rate favourably.
    Matched MeSH terms: Sucrose
  11. Mariam-Aisha Fatima, Muhammad Fahmi Mehdin, Nurain Nasrudin, Neelam Shahab
    MyJurnal
    Lignocellulosic biomass, found in wooden plant husks is a potent renewable material source which can be utilised to form various chemicals and biomaterials including polyols such as xylitol. Xylitol has been used commercially as an alternative to sucrose in many products as bulk sweetener in non-cariogenic confectionery as well as in diabetic diets and solutions for parenteral nutrition. Therefore, this study aims to optimise separation parameters of the Shimadzu high performance liquid chromatography (HPLC) (Model No: LC-20A) and quantify the potential of coconut husk as substrate for Candida albicans in producing xylitol using HPLC. Pretreatment to depolymerise components of biomass i.e. cellulose, hemicellulose and lignin were done using dilute acid hydrolysis method which yielded fermentable reducing sugars, xylose. Xylose is a monosaccharide with an aldehyde functional group, a reducing sugar which is then utilised and fermented by the yeast Candida albicans to form xylitol. In this study, the media used for fermenting pretreated coconut husk and Candida albicans is a synthetic defined (SD) minimal broth. Growth curves against concentration of reducing sugar were plotted to determine utilisation and production trends with specific mixes of carbon sources. The presence of reducing sugars were tested using 3,5-dinitrosalicylic acid (DNS) assay in pretreated coconut husk yielded 13.22 g/L. In order to analyse the product with HPLC, an existing protocol is modified for Hypersil GOLD™ C18 column with acetonitrile as the mobile phase. Results obtained from HPLC analyses using developed protocol suggested the formation of xylitol from the fermentation of pretreated husk by Candida albicans. These can be followed by purification of fermented media in obtaining a better separation of contaminating peaks.

    Matched MeSH terms: Sucrose
  12. Masood M, Masood Y, Reidpath DD, Newton T
    Lancet, 2014 Jun 14;383(9934):2046.
    PMID: 24931691 DOI: 10.1016/S0140-6736(14)60996-X
    Matched MeSH terms: Dietary Sucrose/adverse effects*
  13. Masood M, Masood Y, Newton T
    Caries Res, 2012;46(6):581-8.
    PMID: 23006794 DOI: 10.1159/000342170
    The aim of this study was to examine the impact that national income and income inequality in high and low income countries have on the relationship between dental caries and sugar consumption.
    Matched MeSH terms: Dietary Sucrose/adverse effects; Dietary Sucrose/supply & distribution*
  14. Deng S, Mai Y, Niu J
    Gene, 2019 Mar 20;689:131-140.
    PMID: 30576805 DOI: 10.1016/j.gene.2018.12.016
    Citrus maxima "seedless" is originally from Malaysia, and now is widely cultivated in Hainan province, China. The essential features of this cultivar are thin skin, green epicarp and seedless at the ripening stage. Here, using C. maxima "seedless" as experimental material, we investigated the physical and inclusion indicators, and found the accumulation of storage compounds during 120-210 DAF leading to inconsistent increase between volume and weight. Component analysis of soluble sugar indicated that arabinose and xylose have a high content in early development of pummelo juice sacs (PJS), whereas fructose, glucose and sucrose show a significant increase during PJS maturation. To clarify a global overview of the gene expressing profiles, the PJSs from four periods (60, 120, 180 and 240 DAF) were selected for comparative transcriptome analysis. The resulting 8275 unigenes showed differential expression during PJS development. Also, the stability of 11 housekeeping genes were evaluated by geNorm method, resulting in a set of five genes (UBC, ACT, OR23, DWA2 and CYP21D) used as control for normalization of gene expression. Based on transcriptome data, 5 sucrose synthases (SUSs) and 10 invertases (INVs) were identified to be involved in sucrose degradation. Importantly, SUS4 may be responsible for arabinose and xylose biosynthesis to form the cell wall in early development, while SUS3 and VIN2 may be important in the accumulation of soluble hexose leading to cell expansion through an osmotic-independent pathway in late development. The information provides valuable metabolite and genetic resources in C. maxima "seedless", and is important for achieving high fruit yield and quality.
    Matched MeSH terms: Sucrose/metabolism*
  15. Siti Faridah, M.A., Noor Aziah, A.A.
    MyJurnal
    Response Surface Methodology (RSM) with Central Composite Rotatable Design (CCRD) was performed in this study to develop an acceptable reduced calorie chocolate cake. The range of the independent variables, namely Jackfruit Seed (JFS) flour (20-25% replacement of wheat flour) and polydextrose (10-15% replacement of sucrose) were identified which affect the volume, specific volume, symmetry and uniformity of the chocolate cake. The coefficient of determination, R2 values for volume, specific volume, symmetry and uniformity were greater than 0.900. The optimum level for replacement of sugar with polydextrose was at 11% and wheat flour with JFS flour was at 16% with calorie reduction approximately 34% from the control cake formulation.
    Matched MeSH terms: Sucrose
  16. Jamilah, B., Shu, C. E., Kharidah, M., Dzulkifly, M. A., Noranizan, A.
    MyJurnal
    Pitaya peel (Hylocereus polyrhizus), which consists approximately 22% of the whole fruit weight, is discarded during processing. Physico-chemical properties of the discarded pitaya peel were determined in
    order to evaluate its potential for recovery of any value-added materials. The moisture content of the peel was approximately 92.7% and it was low in total soluble solids, protein, ash and fat content. Betacyanin pigment (150.46 ± 2.19 mg/100 g) and pectin (10.8%) were high in the peel. Glucose, maltose and fructose were detected in the peel but not sucrose and galactose. The peel also had very high insoluble and soluble dietary fibre which had exhibited a good ratio of insoluble dietary fibre to soluble dietary fibre (3.8: 1.0).
    Matched MeSH terms: Sucrose
  17. Koh PC, Noranizan MA, Karim R, Nur Hanani ZA
    J Food Sci Technol, 2019 May;56(5):2563-2575.
    PMID: 31168138 DOI: 10.1007/s13197-019-03739-0
    Fresh-cut fruits are popular due to the convenience provided. However, fresh-cut processes damage fruit tissues and reduce the shelf life of products. Pulsed light (PL) treatment is a decontamination method of foods. PL treatment given repetitively at a certain interval during storage could further extend the shelf life of fresh-cut fruits. Edible coating preserves fresh-cut fruits by providing mechanical strength and reducing respiration and water loss. This study was to evaluate the effects of alginate coating combined with repetitive pulsed light (RPL) on sensory quality and flavour of fresh-cut cantaloupes during storage. Cantaloupes were treated with alginate (1.86%, w/v) and RPL (0.9 J/cm2 at every 48 h up to 26 days) alone or in combination. Flavour analysis of fresh-cut cantaloupes was carried out every 12 days during storage at 4 ± 1 °C while sensory analysis was performed on day 32. Alginate coating and/or RPL retained sugar contents (17.92-20.01 g/kg FW for fructose, 18.77-19.98 g/kg FW for glucose and 23.02-29.41 g/kg FW for sucrose) in fresh-cut cantaloupes during storage. Combination of alginate with RPL reduced accumulation of lactic acid although alginate coating was more effective to minimise changes of other organic acids in fresh-cut cantaloupes. The combined treatment was also more effective than individual treatment in retaining total aroma compound concentration of fresh-cut cantaloupes during storage with the highest relative concentration, i.e. 3.174 on day 36. Overall, the combined alginate coating and RPL was effective to maintain the fresh-like sensory quality of fresh-cut cantaloupes with insignificant overall acceptability compared to the control.
    Matched MeSH terms: Sucrose
  18. Ho CW, Aida WM, Maskat MY, Osman H
    Pak J Biol Sci, 2008 Apr 01;11(7):989-95.
    PMID: 18810967
    During the production of palm sugar, the palm sap (Arenga pinnata) is heated up to 150 degrees C. Besides the hydrolysis of carbohydrate to generate reducing sugars and degradation of amino acid, many physicochemical changes produced at all these temperatures, having a significant impact on the overall quality of palm sugar. In this study, changes in physico-chemical properties of the palm sap due to heat processing were investigated. Analysis of colour, soluble solid, pH, temperature, sugar and amino acid concentration was determinant. The results showed clearly that the heating process at these high temperatures was necessary to create an environment which was rich in essential precursors for subsequent reactions such as Maillard reaction. Chemical compounds that showed drastic changes in concentration were polar side chain amino acids especially glutamine, asparagine and arginine as well as sucrose and pH value. Other quality characteristics of palm sugar based on colour and soluble solids (Brix) shared an increase in concentration as a function of time.
    Matched MeSH terms: Sucrose/analysis
  19. Ho, L. H., Pulsawat, M. M.
    MyJurnal
    The aim of the present work was to produce low sugar cookies by partial substitution with a
    sugar replacer (i.e. maltitol, sorbitol, and isomalt) for sucrose. Four different types of cookies
    were prepared. Sucrose was replaced by maltitol, sorbitol, and isomalt at 50% level (based on
    relative degree of sweetness of sucrose) to produce CMAL50, CSOR50, and CISO50, respectively. Cookies that contained sucrose represented the control. All the cookies produced were
    analysed for chemical properties, physical properties, and sensorial acceptance. The chemical
    analysis results indicated that CMAL50, CSOR50, and CISO50 had higher moisture, crude
    fibre, and the total carbohydrate content, but with lower ash, crude protein, crude fat, calories,
    and total sugar content than the control. CSOR50 showed the lowest total sugar content; thus,
    could be denoted as ‘low sugar’ cookies. Cookies containing maltitol and isomalt presented
    good physical quality. The hardness value of cookies decreased with 50% substitution of
    sorbitol and isomalt for sucrose. CISO50 showed the lowest lightness and yellowness values
    than other cookie samples. The sensory evaluation results showed that the cookies incorporated with maltitol and isomalt did not influence the overall acceptability of cookies. In conclusion, the replacement of sucrose with maltitol, sorbitol, and isomalt could reduce sugar and
    daily calorie intake. However, sorbitol substitution at 50% level is feasible to produce ‘low
    sugar’ cookies, and this cookie could provide benefits to weight and health-conscious
    consumers.
    Matched MeSH terms: Sucrose
  20. Mukhtar H, Suliman SM, Shabbir A, Mumtaz MW, Rashid U, Rahimuddin SA
    Protein Pept Lett, 2018;25(2):195-201.
    PMID: 29359654 DOI: 10.2174/0929866525666180122112805
    BACKGROUND: Lipid-producing microorganisms, said to be oleaginous have been recognized since several years. We had investigated the effects of medium components and culturing situations on cell growth and lipid accumulation of oleaginous yeasts which were analytically examined so as to enhance lipid yield for biodiesel production.

    OBJECTIVE: The main objective of this study was to explore oleaginous yeast, Yarrowia lipolytica isolated from soil and optimization of culture conditions and medium components to obtained better quality microbial oil for biodiesel production.

    METHODS: Fifty yeast strains were isolated from soil from different regions of Lahore and eleven of them were selected for oil production. The isolated yeast colonies were screened to further check their lipid producing capabilities by the qualitative analysis. Five yeast strains were designated as oleaginous because they produced more than 16% of oil based on their biomass. To estimate the total lipid content of yeast cells, the extraction of lipids was done by performing the procedure proposed by Bligh and Dyer. The transesterification of yeast oils was performed by using different methods. There were three different strategies customized to transesterifying microbial oil using base catalyzed transesterification, acid catalyzed transesterification and enzyme-based transesterification. After completion of transesterification, sample was used for fatty acid methyl esters (FAMEs) were analyzed by gas-chromatograph with ionization detector type MS.

    RESULTS: The isolate IIB-10 identified as Yarrowia lipolytica produced maximum amount of lipids i.e. 22.8%. More amount of biomass was obtained when cane molasses was utilized as carbon source where it produced 29.4 g/L of biomass while sucrose and lactose were not utilized by IIB-10 and no biomass was obtained. Similarly, meat extracts showed best results when it was used as nitrogen source because it resulted in 35.8 g/L biomass of Yarrowia lipolytica IIB-10. The culturing conditions like size of inoculum, effect of pH and time of incubation were also studied. The 10% of inoculum size produced 25.4 g/L biomass at 120 h incubation time, while the pH 7 was the optimum pH at which 24.8 g/L biomass was produced by Yarrowia lipolytica IIB-10. GC-MS analysis showed that biodiesel produced by transesterification contained similar fatty acids as found in vegetable oil for this reason it is widely accepted feedstock for biodiesel production.

    CONCLUSION: The analysis of fatty acids methyl esters showed the similar composition of microbial oil as in vegetable oils and high amount of methyl esters were obtained after transesterification. Therefore, potentially oleaginous yeast could be used to generate a large amount of lipids for biodiesel production that will be the better substitute of petroleum-based diesel and will also control the environmental pollution.

    Matched MeSH terms: Sucrose
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links