METHODS: The antidiarrheal investigation was performed by using in vivo castor oil-induced diarrheal method whereas in vitro antimicrobial and antioxidant investigation have been implemented by disc diffusion and DPPH scavenging method respectively. Moreover, in silico studies were followed by molecular docking analysis of several secondary metabolites that were appraised with Schrödinger-Maestro v11.1 and Biovia Discovery Studio.
RESULTS: The induction of plant extract (200 and 400 mg/kg, b.w, p.o) has minimized the castor oil mediated diarrhea by 16.96% (p
METHODS: In this study, the anti-inflammatory activity of ZCA was investigated and compared with that of nonintercalated CA. Evaluations were based on the capacity of ZCA and CA to modulate the release of nitric oxide, prostaglandin E2, interleukin (IL)-6, tumor necrosis factor alpha (TNF-α), IL-1β, and IL-10 in lipopolysaccharide-induced RAW 264.7 cells. Additionally, the expression of proinflammatory enzymes, ie, cyclooxygenase-2, inducible nitric oxide synthase, and nuclear factor kappa B (NF-κB), were examined.
RESULTS: Although both ZCA and CA downregulated nitric oxide, prostaglandin E2, tumor necrosis factor alpha, IL-1β, and IL-6, ZCA clearly displayed better activity. Similarly, expression of cyclooxygenase-2 and inducible nitric oxide synthase were inhibited in samples treated with ZCA and CA. The two compounds effectively inactivated the transcription factor NF-κB, but the anti-inflammatory cytokine, IL-10, was significantly upregulated by ZCA only.
CONCLUSION: The present findings suggest that ZCA possesses better anti-inflammatory potential than CA, while zinc layered hydroxide had little or no effect, and these results were comparable with the positive control.
METHODS: E. elatior flowers grown in three different locations of Malaysia (Kelantan, Pahang and Johor), were investigated for differences in their content of secondary metabolites (total phenolics [TPC], total flavonoids [TFC], and total tannin content [TTC]) as well as for their antioxidant, anticancer, and antibacterial properties. Phenolic acids and flavonoids were isolated and identified using ultra-high performance liquid chromatography (UHPLC). Ferric reducing antioxidant potential (FRAP) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays were used to evaluate the antioxidant activities. The anticancer activity of extracts was evaluated using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay.
RESULTS: When extracted with various solvents (aqueous and ethanolic), samples from the different locations yielded significantly different results for TPC, TFC, and TTC as well as antioxidant activity. Aqueous extracts of E. elatior flowers collected from Kelantan exhibited the highest values: TPC (618.9 mg/100 g DM), TFC (354.2 mg/100 g DM), TTC (129.5 mg/100 g DM), DPPH (76.4 %), and FRAP (6.88 mM of Fe (II)/g) activity with a half-maximal inhibitory concentration (IC50) of 34.5 μg/mL compared with extracts of flowers collected from the other two locations. The most important phenolic compounds isolated in this study, based on concentration, were: gallic acid > caffeic acid > tannic acid > chlorogenic acid; and the most important flavonoids were: quercetin > apigenin > kaempferol > luteolin > myricetin. Extracts of flowers from Kelantan exhibited potent anticancer activity with a IC50of 173.1 and 196.2 μg/mL against the tumor cell lines MCF-7 and MDA-MB-231 respectively, compared with extracts from Pahang (IC50 = 204.5 and 246.2 μg/mL) and Johor samples (IC50 = 277.1 and 296.7 μg/mL). Extracts of E. elatior flowers also showed antibacterial activities against Staphylococcus aureus, Bacillus subtilis, Listeria monocytogenes, Escherichia coli, Salmonella typhimurium, and Pseudomonas aeruginosa with minimal inhibitory concentrations (MIC) ranging from 30 to >100 μg/mL.
CONCLUSIONS: In general, therefore, based on the potent antioxidant and anticancer activity of flower extracts, it appears that E. elatior grown in the North-east of Malaysia (Kelantan) is a potential source of therapeutic compounds with anti-cancer activity.
OBJECTIVES: To investigate the cardiovascular effects of a butanolic fraction of Gynura procumbens in rats.
METHODS: Anaesthetized rats were given intravenous bolus injections of butanolic fraction at doses of 2.5-20 mg/kg in vivo. The effect of butanolic fraction on vascular reactivity was recorded in isolated rat aortic rings in vitro.
RESULTS: Intravenous administrations of butanolic fraction elicited significant (p < 0.001) and dose-dependent decreases in the mean arterial pressure. However, a significant (p < 0.05) decrease in the heart rate was observed only at the higher doses (10 and 20 mg/kg). In isolated preparations of rat aortic rings, phenylephrine (1 × 10⁻⁶ M)- or potassium chloride (8 × 10⁻² M)-precontracted endothelium-intact and -denuded tissue; butanolic fraction (1 × 10⁻⁶ - 1 × 10⁻¹ g/ml) induced similar concentration-dependent relaxation of the vessels. In the presence of 2.5 × 10⁻³ and 5.0 × 10⁻³ g/ml butanolic fraction, the contractions induced by phenylephrine (1 × 10⁻⁹-3 × 10⁻⁵ M) and potassium chloride (1 × 10⁻² - 8 × 10⁻² M) were significantly antagonized. The calcium-induced vasocontractions (1 × 10⁻⁴-1 × 10⁻²M) were antagonized by butanolic fraction concentration-dependently in calcium-free and high potassium (6×10⁻² M) medium, as well as in calcium- and potassium-free medium containing 1×10⁻⁶ M phenylephrine. However, the contractions induced by noradrenaline (1 × 10⁻⁶ M) and caffeine (4.5 × 10⁻² M) were not affected by butanolic fraction.
CONCLUSION: Butanolic fraction contains putative hypotensive compounds that appear to inhibit calcium influx via receptor-operated and/or voltage-dependent calcium channels to cause vasodilation and a consequent fall in blood pressure.