Displaying publications 1381 - 1400 of 9214 in total

Abstract:
Sort:
  1. Ng ZX, Kuppusamy UR, Iqbal T, Chua KH
    Gene, 2013 Jun 1;521(2):227-33.
    PMID: 23545311 DOI: 10.1016/j.gene.2013.03.062
    Receptor for advanced glycation end-product (RAGE) gene polymorphism 2245G/A is associated with diabetic retinopathy (DR). However, the mechanism on how it affects the disease development is still unclear.
    Matched MeSH terms: Arginine/metabolism; Diabetic Retinopathy/metabolism; Glutathione Peroxidase/metabolism; Inflammation/metabolism; Lysine/metabolism; Superoxide Dismutase/metabolism; Biomarkers/metabolism; NF-kappa B/metabolism; Glycosylation End Products, Advanced/metabolism; Chemokine CCL2/metabolism; Advanced Oxidation Protein Products/metabolism
  2. Sarbini SR, Kolida S, Gibson GR, Rastall RA
    Br J Nutr, 2013 Jun;109(11):1980-9.
    PMID: 23116939 DOI: 10.1017/S0007114512004205
    The fermentation selectivity of a commercial source of a-gluco-oligosaccharides (BioEcolians; Solabia) was investigated in vitro. Fermentation by faecal bacteria from four lean and four obese healthy adults was determined in anaerobic, pH-controlled faecal batch cultures. Inulin was used as a positive prebiotic control. Samples were obtained at 0, 10, 24 and 36 h for bacterial enumeration by fluorescent in situ hybridisation and SCFA analyses. Gas production during fermentation was investigated in non-pH-controlled batch cultures. a-Gluco-oligosaccharides significantly increased the Bifidobacterium sp. population compared with the control. Other bacterial groups enumerated were unaffected with the exception of an increase in the Bacteroides–Prevotella group and a decrease in Faecalibacterium prausnitzii on both a-gluco-oligosaccharides and inulin compared with baseline. An increase in acetate and propionate was seen on both substrates. The fermentation of a-gluco-oligosaccharides produced less total gas at a more gradual rate of production than inulin. Generally, substrates fermented with the obese microbiota produced similar results to the lean fermentation regarding bacteriology and metabolic activity. No significant difference at baseline (0 h) was detected between the lean and obese individuals in any of the faecal bacterial groups studied.
    Matched MeSH terms: Bacteria/metabolism*; Oligosaccharides/metabolism*
  3. Appanna R, Wang SM, Ponnampalavanar SA, Lum LC, Sekaran SD
    Am J Trop Med Hyg, 2012 Nov;87(5):936-42.
    PMID: 22987650 DOI: 10.4269/ajtmh.2012.11-0606
    Plasma leakage in severe dengue has been postulated to be associated with skewed cytokine immune responses. In this study, the association of cytokines with vascular permeability in dengue patients was investigated. Human serum samples collected from 48 persons (13 with dengue fever, 29 with dengue hemorrhagic fever, and 6 healthy) were subjected to cytokines analysis by using Luminex Multiplex Technology. Selected serum samples from patients with dengue hemorrhagic fever sera and recombinant human cytokines were then tested for roles on inducing vascular permeability by treatment of human umbilical vein endothelial cells. Confocal immunofluorescence staining indicated morphologic alteration of human umbilical vein endothelial cells treated with serum samples from patients with dengue hemorrhagic fever compared with serum samples from healthy persons. The findings suggest that cytokines produced during dengue hemorrhagic infections could induce alterations in the vascular endothelium, which may play a fundamental role in the pathophysiology of dengue.
    Matched MeSH terms: Endothelium, Vascular/metabolism*; Endothelial Cells/metabolism
  4. Agarwal R, Iezhitsa I, Agarwal P, Spasov A
    Exp Eye Res, 2012 Aug;101:82-9.
    PMID: 22668657 DOI: 10.1016/j.exer.2012.05.008
    Magnesium is one of the most important regulatory cation involved in several biological processes. It is important for maintaining the structural and functional integrity of vital ocular tissues such as lens. Presence of high magnesium content especially in the peripheral part of lens as compared to aqueous and vitreous humor has been observed. Magnesium plays significant role as a cofactor for more than 350 enzymes in the body especially those utilizing ATP. Membrane associated ATPase functions that are crucial in regulating the intracellular ionic environment, are magnesium-dependent. Moreover, the enzymes involved in ATP production and hydrolysis are also magnesium-dependent. Magnesium deficiency by interfering with ATPase functions causes increased intracellular calcium and sodium and decreases intracellular potassium concentration. Furthermore, magnesium deficiency is associated with increased oxidative stress secondary to increased expression of inducible nitric oxide synthase and increased production of nitric oxide. Thus the alterations in lenticular redox status and ionic imbalances form the basis of the association of magnesium deficiency with cataract. In this paper we review the mechanisms involved in magnesium homeostasis and the role of magnesium deficiency in the pathogenesis of cataract.
    Matched MeSH terms: Lens, Crystalline/metabolism; Magnesium Compounds/metabolism
  5. Anarjan N, Tan CP, Nehdi IA, Ling TC
    Food Chem, 2012 Dec 1;135(3):1303-9.
    PMID: 22953858 DOI: 10.1016/j.foodchem.2012.05.091
    Astaxanthin colloidal particles were produced using solvent-diffusion technique in the presence of different food grade surface active compounds, namely, Polysorbate 20 (PS20), sodium caseinate (SC), gum Arabic (GA) and the optimum combination of them (OPT). Particle size and surface charge characteristics, rheological behaviour, chemical stability, colour, in vitro cellular uptake, in vitro antioxidant activity and residual solvent concentration of prepared colloidal particles were evaluated. The results indicated that in most cases the mixture of surface active compounds lead to production of colloidal particles with more desirable physicochemical and biological properties, as compared to using them individually. The optimum combination of PS20, SC and GA could produce the astaxanthin colloidal particles with small particle size, polydispersity index (PDI), conductivity and higher zeta potential, mobility, cellular uptake, colour intensity and in vitro antioxidant activity. In addition, all prepared astaxanthin colloidal particles had significantly (p<0.05) higher cellular uptake than pure astaxanthin powder.
    Matched MeSH terms: Antioxidants/metabolism; Xanthophylls/metabolism
  6. Zubaidah NH, Jasmi AY, Hanafiah H, Shaker AH, Asri CM, Emad AR, et al.
    Rom J Morphol Embryol, 2012;53(2):431-2.
    PMID: 22732820
    Chyle fistula may be common in the neck and thorax region but it is a rare entity in the inguinal region. The rarity of the incidence of chyle fistula and the tremendous response to conservative management are the important aspects to be remembered. We hereby report a case of iatrogenic inguinal chyle fistula complicating a femoral vein cannulation.
    Matched MeSH terms: Chyle/metabolism*; Fistula/metabolism*
  7. Loh Q, Bahara NH, Choong YS, Lim TS
    Anal Biochem, 2012 Dec 1;431(1):54-6.
    PMID: 22975202 DOI: 10.1016/j.ab.2012.08.025
    The quality of a nucleotide-based library such as a synthetic antibody library is highly dependent on the diversity available. Diversity can be generated using degenerate oligonucleotides introduced during gene assembly. Conventional approaches to gene assembly are not efficient for oligonucleotides with long stretches of degeneracy. We propose an efficient alternative for simultaneous introduction of three randomized regions in a synthetic antibody gene via temperature cascading. The strategy takes advantage of DNA reannealing kinetics. The strategy can be adopted for generating diversity of gene inserts during the construction of nucleotide-based libraries.
    Matched MeSH terms: Antibodies/metabolism; Oligonucleotides/metabolism
  8. Rahman MM, Abdullah RB, Wan Khadijah WE
    J Anim Physiol Anim Nutr (Berl), 2013 Aug;97(4):605-14.
    PMID: 22548678 DOI: 10.1111/j.1439-0396.2012.01309.x
    Published data on oxalate poisoning in domestic animals are reviewed, with a focus on tolerance and performance. Oxalic acid is one of a number of anti-nutrients found in forage. It can bind with dietary calcium (Ca) or magnesium (Mg) to form insoluble Ca or Mg oxalate, which then may lead to low serum Ca or Mg levels as well as to renal failure because of precipitation of these salts in the kidneys. Dietary oxalate plays an important role in the formation of Ca oxalate, and a high dietary intake of Ca may decrease oxalate absorption and its subsequent urinary excretion. Oxalate-rich plants can be supplemented with other plants as forage for domestic animals, which may help to reduce the overall intake of oxalate-rich plants. Non-ruminants appear to be more sensitive to oxalate than ruminants because in the latter, rumen bacteria help to degrade oxalate. If ruminants are slowly exposed to a diet high in oxalate, the population of oxalate-degrading bacteria in the rumen increases sufficiently to prevent oxalate poisoning. However, if large quantities of oxalate-rich plants are eaten, the rumen is overwhelmed and unable to metabolize the oxalate and oxalate-poisoning results. Based on published data, we consider that <2.0% soluble oxalate would be an appropriate level to avoid oxalate poisoning in ruminants, although blood Ca level may decrease. In the case of non-ruminants, <0.5% soluble oxalate may be acceptable. However, these proposed safe levels of soluble oxalate should be regarded as preliminary. Further studies, especially long-term studies, are needed to validate and improve the recommended safe levels in animals. This review will encourage further research on the relationships between dietary oxalate, other dietary factors and renal failure in domestic animals.
    Matched MeSH terms: Calcium/metabolism; Magnesium/metabolism
  9. Jaafar H, Abdullah S, Murtey MD, Idris FM
    Asian Pac J Cancer Prev, 2012;13(8):3857-62.
    PMID: 23098483
    A total of 96 cases of invasive breast ductal carcinoma were examined for immunohistochemical expression of Bax and Bcl-2 in the epithelial tumor cells and endothelial cells of the blood vessels. We also investigated the association between both proteins in the epithelium in relation to tumor characteristics such as tumor size, grade, lymph node involvement, microvessel density (MVD), hormonal receptors expression and c-erbB-2 overexpression. Bax expression showed a significant association between tumor and endothelial cells (p<0.001) while Bcl-2 expression in tumor cells was inversely associated with that in the endothelial cells (p<0.001). Expression of Bcl-2 in tumor cells was strongly associated with expression of estrogen and progesterone receptors (p=0.003 and p=0.004, respectively). In addition, intratumoral MVD was significantly higher than peritumoral MVD (p<0.001) but not associated with Bax or Bcl-2 expression and other tumor characteristics. We concluded that the number of endothelial cells undergoing apoptosis was in direct linkage with the number of apoptotic tumor cells. Anti-apoptotic activity of the surviving tumor cells appears to propagate cancer progression and this was influenced by the hormonal status of the cells. Tumor angiogenesis was especially promoted in the intratumoral region and angiogenesis was independent of anti-apoptotic activity.
    Matched MeSH terms: Breast Neoplasms/metabolism*; Endothelium, Vascular/metabolism*; Neovascularization, Pathologic/metabolism*; Receptors, Estrogen/metabolism*; Receptors, Progesterone/metabolism*; Biomarkers, Tumor/metabolism; Carcinoma, Ductal, Breast/metabolism; Receptor, ErbB-2/metabolism*; Proto-Oncogene Proteins c-bcl-2/metabolism*; bcl-2-Associated X Protein/metabolism*; Microvessels/metabolism
  10. Hasan HA, Abdullah SR, Kofli NT, Kamarudin SK
    J Environ Manage, 2012 Nov 30;111:34-43.
    PMID: 22813857 DOI: 10.1016/j.jenvman.2012.06.027
    Manganese (Mn(2+)) is one of the inorganic contaminant that causes problem to water treatment and water distribution due to the accumulation on water piping systems. In this study, Bacillus sp. and sewage activated sludge (SAS) were investigated as biosorbents in laboratory-scale experiments. The study showed that Bacillus sp. was a more effective biosorbent than SAS. The experimental data were fitted to the Langmuir (Langmuir-1 & Langmuir-2), Freundlich, Temkin, Dubinin-Radushkevich (D-R) and Redlich-Peterson (R-P) isotherms to obtain the characteristic parameters of each model. Mn(2+) biosorption by Bacillus sp. was found to be significantly better fitted to the Langmuir-1 isotherm than the other isotherms, while the D-R isotherm was the best fit for SAS; i.e., the χ(2) value was smaller than that for the Freundlich, Temkin, and R-P isotherms. According to the evaluation using the Langmuir-1 isotherm, the maximum biosorption capacities of Mn(2+) onto Bacillus sp. and SAS were 43.5 mg Mn(2+)/g biomass and 12.7 mg Mn(2+)/g biomass, respectively. The data fitted using the D-R isotherm showed that the Mn(2+) biosorption processes by both Bacillus sp. and SAS occurred via the chemical ion-exchange mechanism between the functional groups and Mn(2+) ion.
    Matched MeSH terms: Bacillus/metabolism*; Manganese/metabolism*
  11. Kamada T, Vairappan CS
    Molecules, 2012 Feb 21;17(2):2119-25.
    PMID: 22354189 DOI: 10.3390/molecules17022119
    Six populations of Laurencia nangii were found to produce three bromoallenes; dihydroitomanallene B (1), itomanallene B (2) and pannosallene (3). Prior to this report, L. nangii were only known to produce C(15)-acetogenins with acetylene functionality. This could be regarded as a new chemical race of L. nangii. The compound structures were elucidated on the basis of spectroscopic analysis and comparison with those previously reported in literature. Compound 1, dihydroitomanallene B, was isolated as a new compound representing a minor variation of itomanallene B (2).
    Matched MeSH terms: Heterocyclic Compounds, 2-Ring/metabolism; Laurencia/metabolism
  12. Gasmelseed A
    Electromagn Biol Med, 2011 Sep;30(3):136-45.
    PMID: 21861692 DOI: 10.3109/15368378.2011.596248
    This article describes the analysis of electromagnetic energy absorption properties of models of the human eye with common visual disorders. The investigation addresses two types of visual disorders, namely hyperopia (or farsightedness) and myopia (or nearsightedness). Calculations were carried out using plane multilayered method with common wireless communication frequencies of 900, 1800, and 2450 MHz. The effect of wireless radiation on the eye is studied by calculation of the specific absorption rate (SAR) in three different eye models. The results of the simulations confirmed the anticipated and more complex relationship between absorption and structural variations of the eye at these frequencies.
    Matched MeSH terms: Hyperopia/metabolism*; Myopia/metabolism*
  13. Huang XD, Liang JB, Tan HY, Yahya R, Long R, Ho YW
    J Agric Food Chem, 2011 Oct 12;59(19):10677-82.
    PMID: 21899359 DOI: 10.1021/jf201925g
    Depending on their source, concentration, chemical structure, and molecular weight, condensed tannins (CTs) form insoluble complexes with protein, which could lead to ruminal bypass protein, benefiting animal production. In this study, CTs from Leuceana leucocephala hybrid were fractionated into five fractions by a size exclusion chromatography procedure. The molecular weights of the CT fractions were determined using Q-TOF LC-MS, and the protein-binding affinities of the respective CT fractions were determined using a protein precipitation assay with bovine serum albumin (BSA) as the standard protein. The calculated number-average molecular weights (M(n)) were 1348.6, 857.1, 730.1, 726.0, and 497.1, and b values (the b value represents the CT quantity that is needed to bind half of the maximum precipitable BSA) of the different molecular weight fractions were 0.381, 0.510, 0.580, 0.636, and 0.780 for fractions 1, 2, 3, 4, and 5, respectively. The results indicated that, in general, CTs of higher molecular weight fractions have stronger protein-binding affinity than those of lower molecular weights. However, the number of hydroxyl units within the structure of CT polymers also affects the protein-binding affinity.
    Matched MeSH terms: Serum Albumin, Bovine/metabolism; Proanthocyanidins/metabolism*
  14. Ishak MF, Chua KH, Asma A, Saim L, Aminuddin BS, Ruszymah BH, et al.
    Int J Pediatr Otorhinolaryngol, 2011 Jun;75(6):835-40.
    PMID: 21543123 DOI: 10.1016/j.ijporl.2011.03.021
    This study was aimed to see the difference between chondrocytes from normal cartilage compared to chondrocytes from microtic cartilage. Specific attentions were to characterize the growth of chondrocytes in terms of cell morphology, growth profile and RT-PCR analysis.
    Matched MeSH terms: Congenital Abnormalities/metabolism; Ear Cartilage/metabolism; Intermediate Filament Proteins/metabolism; Nerve Tissue Proteins/metabolism; RNA, Messenger/metabolism; Antigens, CD/metabolism; Chondrocytes/metabolism; ADP-ribosyl Cyclase/metabolism; Octamer Transcription Factor-3/metabolism; SOXB1 Transcription Factors/metabolism; GPI-Linked Proteins/metabolism
  15. Nhari RM, Ismail A, Che Man YB
    J Food Sci, 2012 Jan;77(1):R42-6.
    PMID: 22260124 DOI: 10.1111/j.1750-3841.2011.02514.x
    Usage of gelatin in food products has been widely debated for several years, which is about the source of gelatin that has been used, religion, and health. As an impact, various analytical methods have been introduced and developed to differentiate gelatin whether it is made from porcine or bovine sources. The analytical methods comprise a diverse range of equipment and techniques including spectroscopy, chemical precipitation, chromatography, and immunochemical. Each technique can differentiate gelatins for certain extent with advantages and limitations. This review is focused on overview of the analytical methods available for differentiation of bovine and porcine gelatin and gelatin in food products so that new method development can be established.
    Matched MeSH terms: Dietary Proteins/metabolism; Gelatin/metabolism
  16. Iq KC, Shu-Chien AC
    PLoS One, 2011;6(4):e18555.
    PMID: 21533134 DOI: 10.1371/journal.pone.0018555
    Mouthbrooding is an elaborate form of parental care displayed by many teleost species. While the direct benefits of mouthbrooding such as protection and transportation of offsprings are known, it is unclear if mouthbrooding offers additional benefits to embryos during incubation. In addition, mouthbrooding could incur negative costs on parental fish, due to limited feeding opportunities. Parental tilapia fish (Oreochromis spp.) display an elaborated form of parental care by incubating newly hatched embryos in oral buccal cavity until the complete adsorption of yolk sac. In order to understand the functional aspects of mouthbrooding, we undertake a proteomics approach to compare oral mucus sampled from mouthbrooders and non-mouthbrooders, respectively. Majority of the identified proteins have also been previously identified in other biological fluids or mucus-rich organs in different organisms. We also showed the upregulation of 22 proteins and down regulation of 3 proteins in mucus collected from mouthbrooders. Anterior gradient protein, hemoglobin beta-A chain and alpha-2 globin levels were lower in mouthbrooder samples. Mouthbrooder oral mucus collectively showed increase levels of proteins related to cytoskeletal properties, glycolytic pathway and mediation of oxidative stress. Overall the findings suggest cellular stress response, probably to support production of mucus during mouthbrooding phase.
    Matched MeSH terms: Mucus/metabolism*; Tilapia/metabolism*
  17. Chua SP, Normah MN
    Cryo Letters, 2011 Nov-Dec;32(6):506-15.
    PMID: 22227711
    This paper reports the cryopreservation of Nephelium ramboutan-ake shoot tips derived from in vitro shoot multiplication and in vitro seed germination using vitrification. Preculture with either 0.5 M sucrose for 2 days or a combination of 0.3 M sucrose and 0.5 M glycerol for 3 days enhanced dehydration tolerance and resulted in the highest survival of shoot tips; however, none of the shoot tips withstood liquid nitrogen (LN) exposure. The use of a lower temperature (0 degree C) during exposure to plant vitrification solution (PVS2) led to higher survival of shoot tips, compared to exposure at 25 degree C. The survival percentage of shoot tips exposed to PVS2 for up to 20 min at 0°C was 83.3 percent. It was only 53.3 percent when shoot tips were exposed to PVS2 at 25 degree C for 5 min. The importance of vitamin C for reducing oxidative stress in shoots tips was demonstrated. The addition of 0.28 mM vitamin C during critical steps of the vitrification process resulted in a high survival (96.7 percent) without LN exposure, compared to 73.3 percent for shoot tips not treated with vitamin C. Moreover, 3.3 percent shoot tips withstood LN exposure when vitamin C was added during the loading step. This result suggests that cryopreservation is possible for this tropical, recalcitrant seeded tree species.
    Matched MeSH terms: Plant Shoots/metabolism*; Sapindaceae/metabolism*
  18. Khor GK, Sim JH, Kamaruddin AH, Uzir MH
    Bioresour Technol, 2010 Aug;101(16):6558-61.
    PMID: 20363621 DOI: 10.1016/j.biortech.2010.03.047
    In order to characterize enzyme activity and stability corresponding to temperature effects, thermodynamic studies on commercial immobilized lipase have been carried out via enzymatic transesterification. An optimum temperature of 40 degrees C was obtained in the reaction. The decreasing reaction rates beyond the optimum temperature indicated the occurrence of reversible enzyme deactivation. Thermodynamic studies on lipase denaturation exhibited a first-order kinetics pattern, with considerable stability through time shown by the lipase as well. The activation and deactivation energies were 22.15 kJ mol(-1) and 45.18 kJ mol(-1), respectively, implying more energy was required for the irreversible denaturation of the enzyme to occur. At water content of 0.42%, the initial reaction rate and FAME yield displayed optimum values of 3.317 g/L min and 98%, respectively.
    Matched MeSH terms: Enzymes, Immobilized/metabolism*; Lipase/metabolism*
  19. Abdulla R, Chan ES, Ravindra P
    Crit Rev Biotechnol, 2011 Mar;31(1):53-64.
    PMID: 20572796 DOI: 10.3109/07388551.2010.487185
    The fuel crisis and environmental concerns, mainly due to global warming, have led researchers to consider the importance of biofuels such as biodiesel. Vegetable oils, which are too viscous to be used directly in engines, are converted into their corresponding methyl or ethyl esters by a process called transesterification. With the recent debates on "food versus fuel," non-edible oils, such as Jatropha curcas, are emerging as one of the main contenders for biodiesel production. Much research is still needed to explore and realize the full potential of a green fuel from J. curcas. Upcoming projects and plantations of Jatropha in countries such as India, Malaysia, and Indonesia suggest a promising future for this plant as a potential biodiesel feedstock. Many of the drawbacks associated with chemical catalysts can be overcome by using lipases for enzymatic transesterification. The high cost of lipases can be overcome, to a certain extent, by immobilization techniques. This article reviews the importance of the J. curcas plant and describes existing research conducted on Jatropha biodiesel production. The article highlights areas where further research is required and relevance of designing an immobilized lipase for biodiesel production is discussed.
    Matched MeSH terms: Lipase/metabolism; Jatropha/metabolism*
  20. Mehat MZ, Shuid AN, Mohamed N, Muhammad N, Soelaiman IN
    J. Bone Miner. Metab., 2010 Sep;28(5):503-9.
    PMID: 20145960 DOI: 10.1007/s00774-010-0159-2
    Bone is a specialized connective tissue that functions as the load-bearing structure of the body. Free radicals may affect bone remodeling by regulating osteoclast activity in either the physiological or pathological condition. Vitamin E, a lipid-soluble antioxidant, has been demonstrated to offer protection against osteoporosis and to improve the bone material and structure of animal models. The aim of this study was to observe and compare the effects of alpha-tocopherol (alpha-tocopherol), delta-tocotrienol (delta-tocotrienol), and gamma-tocotrienol (gamma-tocotrienol) on the static and dynamic bone histomorphometric parameters in normal male rats. Thirty-two normal Sprague-Dawley male rats aged 3 months and weighing 200-250 g were randomly divided into four groups. The control group was supplemented with oral gavages of olive oil (vehicle), whereas the alpha-tocopherol, delta-tocotrienol, and gamma-tocotrienol groups were given oral gavages of 60 mg/kg alpha-tocopherol, delta-tocotrienol, and gamma-tocotrienol, respectively. The rats were injected twice with calcein to fluorochrome-label the bones. After 4 months of treatment, the rats were killed, and the left femurs were dissected out and prepared for bone histomorphometry. Both the static and dynamic parameters of the vitamin E-treated groups were better than those of the normal control group. Among the vitamin E-treated groups, the tocotrienol groups showed better histomorphometry results compared to the α-tocopherol group, with the γ-tocotrienol group demonstrating the best effects on both sets of parameters. We concluded that vitamin E can promote bone formation in normal rats, with gamma-tocotrienol being the most potent form of vitamin E.
    Matched MeSH terms: Osteoblasts/metabolism; Osteoclasts/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links