METHODS: In the present study, 3D model of transketolase was constructed and its atomic characteristics revealed. Besides, molecular dynamic simulation of the protein at 310 K and 368 K deciphered transketolase may be a thermophilic protein as the structure does not distort even at elevated temperature. This study also used the protein at 310 K and 368 K resimulated back at 310 K environment.
RESULTS: The results revealed that the protein is stable at all condition which suggest that it has high capacity to adapt at different environment not only at high temperature but also from high temperature condition to low temperature where the structure remains unchanged while retaining protein function.
CONCLUSION: The thermostability properties of transketolase is beneficial for pharmaceutical industries as most of the drug making processes are at high temperature condition.
METHODS: The feed solution was prepared using a PEO dissolved in water or a water-ethanol mixture. The PEO solution is blended with Bovine Serum Albumin protein (BSA) as a model drug to study the effect of the electrospinning process on the stability of the loaded protein. The polymer solution properties such as viscosity, surface tension, and conductivity were controlled by adjusting the solvent and salt content. The morphology and fiber size distribution of the nanofiber was analyzed using scanning electron microscopy.
RESULTS: The results show that the issue of a beaded nanofiber can be eliminated either by increasing the solution viscosity or by the addition of salt and ethanol to the PEO-water system. The addition of salt and solvent produced a high frequency of smaller fiber diameter ranging from 100 to 150 nm. The encapsulation of BSA in PEO nanofiber was characterized by three different spectroscopy techniques (i.e. circular dichroism, Fourier transform infrared, and fluorescence) and the results showed the BSA is well encapsulated in the PEO matrix with no changes in the protein structure.
CONCLUSION: This work may serve as a useful guide for a drug delivery industry to process a nanofiber at a large and continuous scale with a blend of drugs in nanofiber using a wire electrode electrospinning.
RESULTS: All aqueous enzymatic extraction (AEE)-based methods generally resulted in oil with better oxidative properties and higher tocopherol retention than the use of solvent. Prior to AEE, boiling pre-treatment deactivated the hydrolytic enzymes and preserved the oil's quality. In contrast, high-pressure processing (HPP) pre-treatment accelerated hydrolytic reaction and resulted in an increase in free fatty acids after 140 days at all temperatures. No significant changes were detected in the oils' iodine values and fatty acid composition. The tocopherol content decreased significantly at both 13 and 25 °C after 60 days in the oil from SE method, and after 120 days in oils from AEE-based methods.
CONCLUSION: These findings are significant in highlighting the extraction methods resulting in crude MO kernel oil with greatest oxidative stability in the storage conditions tested. Subsequently, the suitable storage condition of the oil prior to refining can be determined. Further studies are recommended in determining the suitable refining processes and parameters for the MO kernel oil prior to application in variety food products. © 2019 Society of Chemical Industry.