Displaying publications 141 - 160 of 508 in total

Abstract:
Sort:
  1. Elias N, Wahab RA, Chandren S, Abdul Razak FI, Jamalis J
    Enzyme Microb Technol, 2019 Nov;130:109367.
    PMID: 31421729 DOI: 10.1016/j.enzmictec.2019.109367
    Currently, the chemically-assisted esterification to manufacture butyl butyrate employs corrosive homogeneous acid catalyst and liberates enormous quantities of hazardous by-products which complicate downstream treatment processes. This study aimed to identify the optimized esterification conditions, and the kinetic aspects of the enzyme-assisted synthesis of butyl butyrate using immobilized Candida rugosa lipase activated by chitosan-reinforced nanocellulose derived from raw oil palm leaves (CRL/CS-NC). The best process variables that gave the maximum conversion degree of butyl butyrate by CRL/CS-NC (90.2%) in just 3 h, as compared to free CRL (62.9%) are as follows: 50 °C, 1:2 M ratio of acid/alcohol, stirring rate of 200 rpm and a 3 mg/mL enzyme load. The enzymatic esterification followed the ping pong bi-bi mechanism with substrate inhibition, revealing a ˜1.1-fold higher Ki for CRL/CS-NC (55.55 mM) over free CRL (50.68 mM). This indicated that CRL/CS-NC was less inhibited by the substrates. Butanol was preferred over butyric acid as reflected by the higher apparent Michaelis-Menten constant of CRL/CS-NC for butanol (137 mM) than butyric acid (142.7 mM). Thus, the kinetics data conclusively showed that CRL/CS-NC (Vmax 0.48 mM min-1, Keff 0.07 min-1 mM-1) was catalytically more efficient than free CRL (Vmax 0.35 mM min-1, Keff 0.06 min-1 mM-1).
    Matched MeSH terms: Plant Leaves/chemistry
  2. Shakri NM, Salleh WMNHW, Khamis S, Mohamad Ali NA
    Z Naturforsch C J Biosci, 2020 Nov 26;75(11-12):485-488.
    PMID: 32966236 DOI: 10.1515/znc-2020-0090
    This study was aimed to investigate the chemical compositions of the essential oils from Goniothalamus macrophyllus and Goniothalamus malayanus growing in Malaysia. The essential oils were obtained by hydrodistillation and fully characterized by gas chromatography (GC-FID) and gas chromatography-mass spectrometry (GC-MS). Analyses of the essential oils from G. macrophyllus and G. malayanus resulted in 93.6 and 95.4% of the total oils, respectively. The major components of G. macrophyllus oil were germacrene D (25.1%), bicyclogermacrene (11.6%), α-copaene (6.9%) and δ-cadinene (6.4%), whereas in G. malayanus oil bicyclogermacrene (43.9%), germacrene D (21.1%) and β-elemene (8.4%) were the most abundant components.
    Matched MeSH terms: Plant Leaves/chemistry*
  3. Nursakinah I, Zulkhairi HA, Norhafizah M, Hasnah B, Zamree MS, Farrah SI, et al.
    Malays J Nutr, 2012 Dec;18(3):363-71.
    PMID: 24568077 MyJurnal
    The objective of this study was to determine antioxidant potential of Garcinia atroviridis leaves and fruits extracts in vitro.
    Matched MeSH terms: Plant Leaves/chemistry*
  4. Goh YS, Karunakaran T, Murugaiyah V, Santhanam R, Abu Bakar MH, Ramanathan S
    Molecules, 2021 Jun 17;26(12).
    PMID: 34204457 DOI: 10.3390/molecules26123704
    Mitragyna speciosa Korth (kratom) is known for its psychoactive and analgesic properties. Mitragynine is the primary constituent present in kratom leaves. This study highlights the utilisation of the green accelerated solvent extraction technique to produce a better, non-toxic and antinociceptive active botanical extract of kratom. ASE M. speciosa extract had a dry yield (0.53-2.91 g) and showed a constant mitragynine content (6.53-7.19%) when extracted with organic solvents of different polarities. It only requires a shorter extraction time (5 min) and a reduced amount of solvents (less than 100 mL). A substantial amount of total phenolic (407.83 ± 2.50 GAE mg/g and flavonoids (194.00 ± 5.00 QE mg/g) were found in ASE kratom ethanol extract. The MTT test indicated that the ASE kratom ethanolic leaf extract is non-cytotoxic towards HEK-293 and HeLa Chang liver cells. In mice, ASE kratom ethanolic extract (200 mg/kg) demonstrated a better antinociceptive effect compared to methanol and ethyl acetate leaf extracts. The presence of bioactive indole alkaloids and flavonols such as mitragynine, paynantheine, quercetin, and rutin in ASE kratom ethanolic leaf extract was detected using UHPLC-ESI-QTOF-MS/MS analysis supports its antinociceptive properties. ASE ethanolic leaf extract offers a better, safe, and cost-effective choice of test botanical extract for further preclinical studies.
    Matched MeSH terms: Plant Leaves/chemistry
  5. Thiagaletchumi M, Zuharah WF, Ahbi Rami R, Fadzly N, Dieng H, Ahmad AH, et al.
    Trop Biomed, 2014 Sep;31(3):466-76.
    PMID: 25382473 MyJurnal
    Specification on residual action of a possible alternative insecticide derived from plant materials is important to determine minimum interval time between applications and the environmental persistence of the biopesticides. The objective of this study is to evaluate crude acethonilic extract of Ipomoea cairica leaves for its residual and persistence effects against Culex quinquefasciatus larvae. Wild strain of Cx. quinquefasciatus larvae were used for the purpose of the study. Two test designs, replenishment of water and without replenishment of water were carried out. For the first design, a total of 10 ml of test solution containing Ip. cairica extracts was replenished daily and replaced with 10 ml of distilled water. For the second design, treatment water was maintained at 1500 ml and only evaporated water was refilled. Larval mortality was recorded at 24 hours post-treatment after each introduction period and trials were terminated when mortality rate falls below 50%. Adult emergences from survived larvae were observed and number of survivals was recorded. For the non-replenishment design, mortality rate significantly reduced to below 50% after 28 days, meanwhile for replenishment of water declined significantly after 21 days (P < 0.05). There was no adult emergence observed up to seven days for non-replenishment and first two days for replenishment of water design. The short period of residual effectiveness of crude acethonilic extract of Ip. cairica leaves with high percentage of larval mortality on the first few days, endorses fewer concerns of having excess residues in the environment which may carry the risk of insecticide resistance and environmental pollution.
    Matched MeSH terms: Plant Leaves/chemistry
  6. Zakaria ZA, Sahmat A, Azmi AH, Nur Zainol AS, Omar MH, Balan T, et al.
    BMC Complement Med Ther, 2021 Jan 14;21(1):35.
    PMID: 33446155 DOI: 10.1186/s12906-020-03200-2
    INTRODUCTION: Water-soluble, but not lipid-soluble, extract of Dicranopteris linearis leaves has been proven to possess hepatoprotective activity. The present study aimed to validate the hepatoprotective and antioxidant activities, and phytoconstituents of lipid-soluble (chloroform) extract of D. linearis leaves.

    METHODS: The extract of D. linearis leaves (CEDL; 50, 250 and 500 mg/kg) was orally administered to rats for 7 consecutive days followed by the oral administration of 3 g/kg PCM to induce liver injury. Blood was collected for liver function analysis while the liver was obtained for histopathological examination and endogenous antioxidant activity determination. The extract was also subjected to antioxidant evaluation and phytochemicals determination via phytochemical screening, HPLC and UPLC-HRMS analyses.

    RESULTS: CEDL exerted significant (p 

    Matched MeSH terms: Plant Leaves/chemistry
  7. Ado MA, Maulidiani M, Ismail IS, Ghazali HM, Shaari K, Abas F
    Nat Prod Res, 2021 Sep;35(17):2992-2996.
    PMID: 31631709 DOI: 10.1080/14786419.2019.1679138
    Phytochemical investigation on the soluble fractions of n-hexane and dichloromethane of methanolic leaves extract of the Callicarpa maingayi K. & G. led to the isolation of three triterpenoids [euscaphic acid (1), arjunic acid (2), and ursolic acid (3)] together with two flavones [apigenin (4) and acacetin (5)], two phytosterols [stigmasterol 3-O-β-glycopyranoside (6) and sitosterol 3-O-β-glycopyranoside (7)], and a fatty acid [n-hexacosanoic acid (8)]. Six (6) compounds (1, 2, 3, 4, 5, and 8) are reported for the first time from this species. Their structures were elucidated and identified by extensive NMR techniques, GC-MS and comparison with the previously reported literature. Compound 3 was found to displayed good inhibition against acetylcholinesterase with an IC50 value of 21.5 ± 0.022 μM, while 1 and 2 exhibited pronounced α-glucosidase inhibitory activity with IC50 values of 22.4 ± 0.016 μM and 24.9 ± 0.012 μM, respectively.
    Matched MeSH terms: Plant Leaves/chemistry
  8. Fong SY, Piva T, Dekiwadia C, Urban S, Huynh T
    BMC Complement Altern Med, 2016 Sep 20;16:368.
    PMID: 27646974 DOI: 10.1186/s12906-016-1348-x
    Clinacanthus nutans (Burm. f.) Lindau leaves are widely used by cancer patients and the leaf extracts possess cytotoxic and antiproliferative effects on several human cancer cell lines. However, the effect of C. nutans leaf extract on human melanoma, which is the least common but most fatal form of skin cancer and one of the most common cancers diagnosed in both sexes worldwide, is unknown. There is also limited information on whether the bioactivity of extracts differs between C. nutans leaves grown in different geographical locations with varying environmental conditions.
    Matched MeSH terms: Plant Leaves/chemistry*
  9. Owolabi AF, Haafiz MK, Hossain MS, Hussin MH, Fazita MR
    Int J Biol Macromol, 2017 Feb;95:1228-1234.
    PMID: 27836655 DOI: 10.1016/j.ijbiomac.2016.11.016
    In the present study, microcrystalline cellulose (MCC) was isolated from oil palm fronds (OPF) using chemo-mechanical process. Wherein, alkaline hydrogen peroxide (AHP) was utilized to extract OPF fibre at different AHP concentrations. The OPF pulp fibre was then bleached with acidified sodium chlorite solution followed by the acid hydrolysis using hydrochloric acid. Several analytical methods were conducted to determine the influence of AHP concentration on thermal properties, morphological properties, microscopic and crystalline behaviour of isolated MCC. Results showed that the MCC extracted from OPF fibres had fibre diameters of 7.55-9.11nm. X-ray diffraction (XRD) analyses revealed that the obtained microcrystalline fibre had both celluloses I and cellulose II polymorphs structure, depending on the AHP concentrations. The Fourier transmission infrared (FTIR) analyses showed that the AHP pre-hydrolysis was successfully removed hemicelluloses and lignin from the OPF fibre. The crystallinity of the MCC was increased with the AHP concentrations. The degradation temperature of MCC was about 300°C. The finding of the present study showed that pre-treatment process potentially influenced the quality of the isolation of MCC from oil palm fronds.
    Matched MeSH terms: Plant Leaves/chemistry*
  10. Zokti JA, Sham Baharin B, Mohammed AS, Abas F
    Molecules, 2016 Jul 26;21(8).
    PMID: 27472310 DOI: 10.3390/molecules21080940
    Green tea polyphenols have been reported to possess many biological properties. Despite the many potential benefits of green tea extracts, their sensitivity to high temperature, pH and oxygen is a major disadvantage hindering their effective utilization in the food industry. Green tea leaves from the Cameron Highlands Malaysia were extracted using supercritical fluid extraction (SFE). To improve the stability, green tea extracts were encapsulated by spray-drying using different carrier materials including maltodextrin (MD), gum arabic (GA) and chitosan (CTS) and their combinations at different ratios. Encapsulation efficiency, total phenolic content and antioxidant capacity were determined and were found to be in the range of 71.41%-88.04%, 19.32-24.90 (g GAE/100 g), and 29.52%-38.05% respectively. Further analysis of moisture content, water activity, hygroscopicity, bulk density and mean particles size distribution of the microparticles were carried out and the results ranged from; 2.31%-5.11%, 0.28-0.36, 3.22%-4.71%, 0.22-0.28 g/cm³ and 40.43-225.64 µm respectively. The ability of the microparticles to swell in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) was determined as 142.00%-188.63% and 207.55%-231.77%, respectively. Release of catechin polyphenol from microparticles in SIF was higher comparable to that of SGF. Storage stability of encapsulated catechin extracts under different temperature conditions was remarkably improved compared to non-encapsulated extract powder. This study showed that total catechin, total phenolic content (TPC) and antioxidant activity did not decrease significantly (p ≥ 0.05) under 4 °C storage conditions. The half-life study results were in the range of 35-60, 34-65 and 231-288 weeks at storage temperatures of 40 °C, 25 °C and 4 °C respectively, therefore, for improved shelf-life stability we recommend that microparticles should be stored at temperatures below 25 °C.
    Matched MeSH terms: Plant Leaves/chemistry
  11. Kabir MF, Mohd Ali J, Abolmaesoomi M, Hashim OH
    BMC Complement Altern Med, 2017 May 05;17(1):252.
    PMID: 28476158 DOI: 10.1186/s12906-017-1761-9
    BACKGROUND: Melicope ptelefolia is a well-known herb in a number of Asian countries. It is often used as vegetable salad and traditional medicine to address various ailments. However, not many studies have been currently done to evaluate the medicinal benefits of M. ptelefolia (MP). The present study reports antioxidant, anti-proliferative, and apoptosis induction activities of MP leaf extracts.

    METHOD: Young MP leaves were dried, powdered and extracted sequentially using hexane (HX), ethyl acetate (EA), methanol (MeOH) and water (W). Antioxidant activity was evaluated using ferric reducing antioxidant power (FRAP), 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 1,1-Diphenyl-2-picryl-hydrazyl (DPPH) radicals scavenging and cellular antioxidant activity (CAA) assays. Anti-proliferative activity was evaluated through cell viability assay, using the following four human cancer cell lines: breast (HCC1937, MDA-MB-231), colorectal (HCT116) and liver (HepG2). The anti-proliferative activity was further confirmed through cell cycle and apoptosis assays, including annexin-V/7-aminoactinomycin D staining and measurements of caspase enzymes activation and inhibition.

    RESULT: Overall, MP-HX extract exhibited the highest antioxidant potential, with IC50 values of 267.73 ± 5.58 and 327.40 ± 3.80 μg/mL for ABTS and DPPH radical-scavenging assays, respectively. MP-HX demonstrated the highest CAA activity in Hs27 cells, with EC50 of 11.30 ± 0.68 μg/mL, while MP-EA showed EC50 value of 37.32 ± 0.68 μg/mL. MP-HX and MP-EA showed promising anti-proliferative activity towards the four cancer cell lines, with IC50 values that were mostly below 100 μg/mL. MP-HX showed the most notable anti-proliferative activity against MDA-MB-231 (IC50 = 57.81 ± 3.49 μg/mL) and HCT116 (IC50 = 58.04 ± 0.96 μg/mL) while MP-EA showed strongest anti-proliferative activity in HCT116 (IC50 = 64.69 ± 0.72 μg/mL). The anticancer potential of MP-HX and MP-EA were also demonstrated by their ability to induce caspase-dependent apoptotic cell death in all of the cancer cell lines tested. Cell cycle analysis suggested that both the MP-HX and MP-EA extracts were able to disrupt the cell cycle in most of the cancer cell lines.

    CONCLUSIONS: MP-HX and MP-EA extracts demonstrated notable antioxidant, anti-proliferative, apoptosis induction and cancer cell cycle inhibition activities. These findings reflect the promising potentials of MP to be a source of novel phytochemical(s) with health promoting benefits that are also valuable for nutraceutical industry and cancer therapy.

    Matched MeSH terms: Plant Leaves/chemistry
  12. Vijayarathna S, Oon CE, Chen Y, Kanwar JR, Sasidharan S
    Biomed Pharmacother, 2017 May;89:499-514.
    PMID: 28249252 DOI: 10.1016/j.biopha.2017.02.075
    Medicinal plants have been accepted as a gold mine, with respect to the diversity of their phytochemicals. Many medicinal plants extracts are potential anticancer agents. Polyalthia longifolia var. angustifolia Thw. (Annonaceae) is one of the most significant native medicinal plants and is found throughout Malaysia. Hence, the present study was intended to assess the anticancer properties of P. longifolia leaf methanolic extract (PLME) and its underlying mechanisms. The Annexin V/PI flow cytometry analysis showed that PLME induces apoptosis in HeLa cells in dose-dependent manner whereas the PI flow cytometric analysis for cell cycle demonstrated the accumulation of cells at sub G0/G1, G0/G1 and G2/M phases. Investigation with JC-1 flow cytometry analysis indicated increase in mitochondria membrane potential depolarisation corresponding to increase in PLME concentrations. PLME was also shown to influence intracellular reactive oxygen species (ROS) by exerting anti-oxidant (half IC50) and pro-oxidant (IC50and double IC50) affect against HeLa cells. PLME treatment also displayed DNA damage in HeLa cells in concentration depended fashion. The proteomic profiling array exposed the expression of pro-apoptotic and anti-apoptotic proteins upon PLME treatment at IC50concentration in HeLa cells. Pro-apoptotic proteins; BAX, BAD, cytochrome c, caspase-3, p21, p27 and p53 were found to be significantly up-regulated while anti-apoptotic proteins; BCL-2 and BCL-w were found to be significantly down-regulated. This investigation postulated the role of p53 into mediating apoptosis, cell cycle arrest and mitochondrial potential depolarisation by modulating the redox status of HeLa cells.
    Matched MeSH terms: Plant Leaves/chemistry*
  13. Matsumoto T, Kitagawa T, Teo S, Anai Y, Ikeda R, Imahori D, et al.
    J Nat Prod, 2018 10 26;81(10):2187-2194.
    PMID: 30335380 DOI: 10.1021/acs.jnatprod.8b00341
    A methanol extract of the dried leaves of Lansium domesticum showed antimutagenic effects against 3-amino-1,4-dimethyl-5 H-pyrido[4,3- b]indole (Trp-P-1) and 2-amino-1-methyl-6-phenylimidazo[4,5- bI]pyridine (PhIP) using the Ames assay. Nine new onoceranoid-type triterpenoids, lansium acids I-IX (1-9), and nine known compounds (10-16) were isolated from the extract. The structures of the new compounds were elucidated on the basis of chemical and spectroscopic evidence. The absolute stereostructures of the new compounds were determined via their electronic circular dichroism spectra. Several isolated onoceranoid-type triterpeneoids showed antimutagenic effects in an in vitro Ames assay. Moreover, oral intake of a major constituent, lansionic acid (10), showed antimutagenic effects against PhIP in an in vivo micronucleus test.
    Matched MeSH terms: Plant Leaves/chemistry*
  14. Rajapakse S, de Silva NL, Weeratunga P, Rodrigo C, Sigera C, Fernando SD
    BMC Complement Altern Med, 2019 Oct 11;19(1):265.
    PMID: 31601215 DOI: 10.1186/s12906-019-2678-2
    BACKGROUND: Carica papaya (CP) extract is becoming popular as an unlicensed herbal remedy purported to hasten recovery in dengue infection, mostly based on observations that it may increase platelet counts. This systematic review and meta-analysis aims to critically analyze the evidence from controlled clinical trials on the efficacy and safety of CP extract in the treatment of dengue infection.

    METHODS: PubMed, LILACS and Google Scholar were searched for randomized or non-randomized trials enrolling patients with suspected or confirmed dengue where CP extract was compared, as a treatment measure, against standard treatment. Recovery of platelet counts as well as other clinical indicators of favourable outcome (duration of hospital stay, prevention of plasma leakage, life threatening complications, and mortality) were assessed.

    RESULTS: Nine studies (India-6, Pakistan-1, Indonesia-1, Malaysia-1) met the inclusion criteria. Seven studies showed an increase in platelet counts in patients receiving CP extract, while one study showed no significant difference between the two groups, and direct comparison was not possible in the remaining study. Serious adverse events were not reported. CP extract may reduce the duration of hospital stay (mean difference - 1.98 days, 95% confidence interval - 1.83 to - 2.12, 3 studies, 580 participants, low quality evidence), and cause improvement in mean platelet counts between the first and fifth day of treatment (mean difference 35.45, 95% confidence interval 23.74 to 47.15, 3 studies, 129 participants, low quality evidence). No evidence was available regarding other clinical outcomes.

    CONCLUSIONS: The clinical value of improvement in platelet count or early discharge is unclear in the absence of more robust indicators of favourable clinical outcome. Current evidence is insufficient to comment on the role of CP extract in dengue. There is a need for further well designed clinical trials examining the effect of CP on platelet counts, plasma leakage, other serious manifestations of dengue, and mortality, with clearly defined outcome measures.

    Matched MeSH terms: Plant Leaves/chemistry
  15. Abdul Ghani ZDF, Ab Rashid AH, Shaari K, Chik Z
    Appl Biochem Biotechnol, 2019 Oct;189(2):690-708.
    PMID: 31111377 DOI: 10.1007/s12010-019-03042-w
    The present studies are to evaluate the ability of PB to induce weight loss and urine metabolite profile of Piper betle L. (PB) leaf extracts using metabolomics approach. Dried PB leaves were extracted with ethanol 70% and the studies were performed in different groups of rats fed with high fat (HFD) and normal diet (ND). Then, fed with the PB extract with 100, 300, and 500 mg/kg and two negative control groups given water (WTR). The body weights were monitored and evaluated. Urine was collected and 1H NMR-based metabolomics approach was used to detect the metabolite changes. Results showed that PB-treated group demonstrated inhibition of body weight gain. The trajectory of urine metabolites showed that PB-treated group gave the different distribution from week 12 to 16 compared with the control groups. In 1H NMR metabolomic approach analysis, the urine metabolites gave the best separation in principle component 1 and 3, with 40.0% and 9.56% of the total variation. Shared and unique structures (SUS) plot model showed that higher concentration PB-treated group was characterized by high level of indole-3-acetate, aspartate, methanol, histidine, and creatine, thus caused an increased the metabolic function and maintaining the body weight of the animals treated.
    Matched MeSH terms: Plant Leaves/chemistry*
  16. Sulaiman N, Chee Beng Y, Ahmad Bustamam FK, Khairuddin NSK, Muhamad H
    Drug Test Anal, 2020 Apr;12(4):504-513.
    PMID: 31898859 DOI: 10.1002/dta.2760
    Cypermethrin is a pyrethroid insecticide commonly used to control bagworm infestation in oil palm plantations. It is applied through spraying onto the leaves where the bagworms reside. This article reports the fate of cypermethrin used in a Malaysian oil palm plantation during a typical dry season through the analysis of cypermethrin residue in environmental and palm oil samples collected from a supervised field trial. Residues of cypermethrin were not detected in the soil samples collected at different depths, water samples collected at different points in the experimental plots, and oil samples extracted from fresh fruit bunches (FFB) harvested from each plot for both single and double dosages of treatment throughout the study interval. Analysis of leaf samples, however, revealed that cypermethrin residue was detected for both pesticide treatments up to day 2 after cypermethrin application.
    Matched MeSH terms: Plant Leaves/chemistry
  17. Asmilia N, Fahrimal Y, Abrar M, Rinidar R
    ScientificWorldJournal, 2020;2020:2739056.
    PMID: 32395086 DOI: 10.1155/2020/2739056
    Malacca (Phyllanthus emblica) is one of the plants that is often by the community in the Aceh Besar district of Indonesia as a traditional medicine for the treatment of various diseases such as antimicrobial, antibacterial, antifungals, antivirals, antimutagenic, antimalaria, and antiallergic. This research was conducted to analyze the content of chemical compounds in the ethanol extract of the Malacca leaf (EEDM) using a gas chromatography-mass spectrophotometer (GC-MS). Malacca leaves were extracted by the maceration method using n-hexane, ethyl acetate, and ethanol. The GC-MS analysis showed EEDM contained 22 chemical compounds. The highest chemical content of EEDM is octadecanoic acid reaching 22.93%, 9,12-octadecanoic acid 14.99%, octadecanoic acid 7.59%, 9-hexadecenoic acid 6.17%, octadecanoic acid 5.95%, octadecanal 5.59%, 9,12-octadecanoic acid 5.06%, 3-eicosyne 4.75%, 1-hexadecenoic acid 4.08%, 11-tetradecen-1-ol 2.92%, 2-furanmethanol 2.83%, delta-guaiene 2.43%, cyclohexane 2.13%, hexadecanoic acid 1.99%, sativen 1.87%, octadecanoic acid 1.52%, 1H-cyclopropaanaphthalene 1.40%, tetradecanoic acid 1.40%, 3,7,11-tridecatrienenitrile 1.20%, caryophellene 1.11%, 2H-pyran 1.07%, and trans-caryophellene 1.03%. This study clearly shows the presence of fatty acids which play a major role in the efficacy of these traditional medicines particularly as antioxidant and antimalarial.
    Matched MeSH terms: Plant Leaves/chemistry
  18. Hau EH, Teh SS, Yeo SK, Mah SH
    J Sci Food Agric, 2022 Jan 15;102(1):233-240.
    PMID: 34081335 DOI: 10.1002/jsfa.11350
    BACKGROUND: The oil palm tree produces 90% of wastes and the limited usage of these wastes causes a major disposal problem in the mills. Nevertheless, these by-products have a large amount of nutritional components. Thus, the present study aimed to determine the physicochemical and functional properties of protein hydrolysates (PH) from oil palm leaves (OPL) extracted using different concentrations of Alcalase (0-10%) at 2 h of hydrolysis time.

    RESULTS: Fourier transform infrared spectral analyses showed that the enzymatic hydrolysis altered functional groups of OPL where a secondary amine was present in the PH. Changes were also observed in the thermal stability where the enthalpy heat obtained for PH (933.93-1142.57 J g-1 ) was much lower than OPL (7854.11 J g-1 ). The results showed that the PH extracted by 8% Alcalase exhibited absolute zeta potential, as well as a high emulsifying activity index (70.64 m2  g-1 of protein) and emulsion stability index (60.58 min). Furthermore, this PH showed higher solubility (96.32%) and emulsifying properties compared to other PHs. It is also comparable with commercial plant proteins, indicating that 8% Alcalase is an optimum concentration for hydrolysis.

    CONCLUSION: In summary, the physicochemical and functional properties of PH extracted from OPL showed good functional properties, suggesting that it can be used as an alternative plant protein in food industries. © 2021 Society of Chemical Industry.

    Matched MeSH terms: Plant Leaves/chemistry*
  19. Muchtaridi M, Nuwarda RF, Ikram EHK, Abdul Rahim AS, Gazzali AM, Wahab HA
    Molecules, 2022 Jan 30;27(3).
    PMID: 35164214 DOI: 10.3390/molecules27030949
    Neuraminidase (NA) is an enzyme that prevents virions from aggregating within the host cell and promotes cell-to-cell spread by cleaving glycosidic linkages to sialic acid. The best-known neuraminidase is the viral neuraminidase, which present in the influenza virus. Thus, the development of anti-influenza drugs that inhibit NA has emerged as an important and intriguing approach in the treatment of influenza. Garcinia atroviridis L. (GA) dried fruits (GAF) are used commercially as seasoning and in beverages. The main objective of this study was to identify a new potential neuraminidase inhibitor from GA. A bioassay-guided fractionation method was applied to obtain the bioactive compounds leading to the identification of garcinia acid and naringenin. In an enzyme inhibition study, garcinia acid demonstrated the highest activity when compared to naringenin. Garcinia acid had the highest activity, with an IC50 of 17.34-17.53 µg/mL or 91.22-92.21 µM against Clostridium perfringens-NA, and 56.71-57.85 µg/mL or 298.32-304.31 µM against H1N1-NA. Based on molecular docking results, garcinia acid interacted with the triad arginine residues (Arg118, Arg292, and Arg371) of the viral neuraminidase, implying that this compound has the potential to act as a NA enzyme inhibitor.
    Matched MeSH terms: Plant Leaves/chemistry*
  20. Dyary HO, Arifah AK, Sharma RS, Rasedee A, Mohd Aspollah MS, Zakaria ZA, et al.
    Res Vet Sci, 2015 Jun;100:226-31.
    PMID: 25818171 DOI: 10.1016/j.rvsc.2015.03.007
    The anti-Trypanosoma evansi activity of Garcinia hombroniana (seashore mangosteen) leaves aqueous extract was tested on experimentally infected Sprague-Dawley rats. Treatment of infected rats with G. hombroniana extract resulted in a significantly extended post-infection longevity (p plant extract was also investigated on cultured T. evansi in HMI-9 medium with the addition of 25 µg/ml G. hombroniana aqueous extract. It was observed that the addition of G. hombroniana extract resulted in the inhibition of trypanosomal kinetoplast division, with no significant inhibitory effect on nuclear division. It is concluded from the current study that the aqueous extract of G. hombroniana has a potential antitrypanosomal activity through the inhibition of kinetoplast division, as one of the possible mechanisms of its antitrypanosomal effect. This plant could serve as a possible source of new antitrypanosomal compounds.
    Matched MeSH terms: Plant Leaves/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links