OBJECTIVE: To develop a decision-making program and analyze multi-institutional outcomes of RAC-IVCT versus RAT-IVCT.
DESIGN, SETTING, AND PARTICIPANTS: Ninety patients with renal cell carcinoma (RCC) with level II IVCT were included from eight Chinese urological centers, and underwent RAC-IVCT (30 patients) or RAT-IVCT (60 patients) from June 2013 to January 2019.
SURGICAL PROCEDURE: The surgical strategy was based on IVCT imaging characteristics. RAT-IVCT was performed with standardized cavotomy, thrombectomy, and IVC reconstruction. RAC-IVCT was mainly performed in patients with extensive IVC wall invasion when the collateral blood vessels were well-established. For right-sided RCC, the IVC from the infrarenal vein to the infrahepatic veins was stapled. For left-sided RCC, the IVC from the suprarenal vein to the infrahepatic veins was removed and caudal IVC reconstruction was performed to ensure the right renal vein returned through the IVC collaterals.
MEASUREMENTS: Clinicopathological, operative, and survival outcomes were collected and analyzed.
RESULTS AND LIMITATIONS: All procedures were successfully performed without open conversion. The median operation time (268 vs 190 min) and estimated blood loss (1500 vs 400 ml) were significantly greater for RAC-IVCT versus RAT-IVCT (both p < 0.001). IVC invasion was a risk factor for progression-free and overall survival at midterm follow-up. Large-volume and long-term follow-up studies are needed.
CONCLUSIONS: RAC-IVCT or RAT-IVCT represents an alternative minimally invasive approach for selected RCC patients with level II IVCT. Selection of RAC-IVCT or RAT-IVCT is mainly based on preoperative IVCT imaging characteristics, including the presence of IVC wall invasion, the affected kidney, and establishment of the collateral circulation.
PATIENT SUMMARY: In this study we found that robotic surgeries for level II inferior vena cava thrombus were feasible and safe. Preoperative imaging played an important role in establishing an appropriate surgical plan.
MATERIALS AND METHODS: Cell viability was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Reactive oxygen species (ROS) and membrane potential was detected using 2',7'-dichlorofluorescein diacetate and 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide (JC-1) dye staining, respectively. While, cell apoptosis was determined by Annexin-V staining and protein expression was measured using Western blot.
RESULTS: Our results suggested that melatonin inhibited glucose-induced ROS elevation, mitochondria dysfunction and apoptosis on HUVEC. Melatonin inhibited glucose-induced HUVEC apoptosis via PI3K/Akt signaling pathway. Activation of Akt further activated BcL-2 pathway through upregulation of Mcl-1 expression and downregulation Bax expression in order to inhibit glucose-induced HUVEC apoptosis. Besides that, melatonin promoted downregulation of oxLDL/LOX-1 in order to inhibit glucose-induced HUVEC apoptosis.
CONCLUSIONS: In conclusion, our results suggested that melatonin exerted vasculoprotective effects against glucose-induced apoptosis in HUVEC through PI3K/Akt, Bcl-2 and oxLDL/LOX-1 signaling pathways.
AIM OF THE STUDY: This study aimed to investigate the effect and mechanism of β-glucan prepared from L. rhinocerotis using an enzymatic method on epithelial restitution during intestinal mucosal damage.
MATERIALS AND METHODS: Based on FT-IR, MALDI-TOF-MS, HPSEC-MALLS-RID, and AFM, the structure of polysaccharides from L. rhinocerotis was analysed. In addition, polysaccharides were used to test for wound healing activity in IEC-6 cells by measuring cell migration, proliferation, and expression of cell division control protein 42, Rac-1, RhoA, and Par-3.
RESULTS: β-glucan was extracted using enzyme-assisted extraction, and a yield of approximately 8.5 ± 0.8% was obtained from the dried biomass. The β-glucan extracted by enzyme-assisted extraction (EAE) of polysaccharides was composed entirely of D-glucose with a total carbohydrate content of 95.5 ± 3.2%. The results of HPLC, FTIR, and MALDI-TOF-MS analyses revealed EAEP to be confirmed as β-glucan. The molecular weight of prepared β-glucan was found to be 5.315 × 104 g/mol by HPSEC-MALLS-RID. Furthermore, mucosal wound healing studies showed that the treatment of IEC-6 with a β-glucan concentration of 200 μg/mL promoted cell migration and proliferation, and it enhanced the protein expression of cell division control protein 42, Rac-1, RhoA, and Par-3.
CONCLUSIONS: The present study reveals that the prepared β-glucan accelerates intestinal epithelial cell proliferation and migration via activation of Rho-dependent pathway. Hence, β-glucan can be employed as a prospective therapeutic agent for the treatment of diseases associated with gastrointestinal mucosal damage, such as peptic ulcers and inflammatory bowel disease.
METHODS: Sprague-Dawley rats were injected with CCl4 for 8 weeks to induce irreversible liver fibrosis. Ex-vivo expanded, pooled human MSCs obtained from BM and WJ were intravenously administered into rats with liver fibrosis at a dose of 10 × 106 cells/animal. Sham control and vehicle-treated animals served as negative and disease controls, respectively. The animals were sacrificed at 30 and 70 days after cell transplantation and hepatic-hydroxyproline content, histopathological, and immunohistochemical analyses were performed.
RESULTS: BM-MSCs treatment showed a marked reduction in liver fibrosis as determined by Masson's trichrome and Sirius red staining as compared to those treated with the vehicle. Furthermore, hepatic-hydroxyproline content and percentage collagen proportionate area were found to be significantly lower in the BM-MSCs-treated group. In contrast, WJ-MSCs treatment showed less reduction of fibrosis at both time points. Immunohistochemical analysis of BM-MSCs-treated liver samples showed a reduction in α-SMA+ myofibroblasts and increased number of EpCAM+ hepatic progenitor cells, along with Ki-67+ and human matrix metalloprotease-1+ (MMP-1+) cells as compared to WJ-MSCs-treated rat livers.
CONCLUSIONS: Our findings suggest that BM-MSCs are more effective than WJ-MSCs in treating liver fibrosis in a CCl4-induced model in rats. The superior therapeutic activity of BM-MSCs may be attributed to their expression of certain MMPs and angiogenic factors.
METHODS: The release of prostaglandin E2 (PGE2) and pro-inflammatory cytokines, tumor necrosis factor (TNF)-α and interleukin (IL)-1β in a culture supernatant was determined by ELISA. Determination of cyclooxygenase-2 (COX-2) protein and the activation of MAPKs molecules (JNK, ERK and p38 MAPK), NF-κB and Akt in LPS-induced U937 human macrophages were investigated by immunoblot technique. The relative gene expression levels of COX-2 and pro-inflammatory cytokines were measured by using qRT-PCR. The major metabolites of P. amarus were qualitatively and quantitatively analyzed in the extract by using validated reversed-phase high performance liquid chromatography (HPLC) methods.
RESULTS: P. amarus extract significantly inhibited the production of pro-inflammatory mediators (TNF-α, IL-1β, PGE2) and COX-2 protein expression in LPS-induced U937 human macrophages. P. amarus-pretreatment also significantly downregulated the increased mRNA transcription of pro-inflammatory markers (TNF-α, IL-1β, and COX-2) in respective LPS-induced U937 macrophages. It downregulated the phosphorylation of NF-κB (p65), IκBα, and IKKα/β and restored the degradation of IκBα, and attenuated the expression of Akt, JNK, ERK, and p38 MAPKs phosphorylation in a dose-dependent manner. P. amarus extract also downregulated the expression of upstream signaling molecules, TLR4 and MyD88, which play major role in activation of NF-κB, MAPK and PI3K-Akt signaling pathways. The quantitative amounts of lignans, phyllanthin, hypophyllahtin and niranthin, and polyphenols, gallic acid, geraniin, corilagin, and ellagic acid in the extract were determined by HPLC analysis.
CONCLUSION: The study revealed that P. amarus targeted the NF-κB, MAPK and PI3K-Akt signaling pathways to exert its anti- inflammatory effects by downregulating the prospective inflammatory signaling mediators.
METHODS: A new synthetic compound, 2-(1,1-dimethyl-1H-benzo[e]indol-2-yl)-3-((2-hydroxyphenyl)amino) acrylaldehyde, abbreviated as DBID, was prepared through the reaction of 2-(diformylmethylidene)-1,1- dimethylbenzo[e]indole with 2-aminophenol. The chemical structure of the synthesized compound was characterized by 1H NMR, 13C NMR and APT-NMR spectroscopy and confirmed by elemental analysis (CHN). The compound was screened for the antiproliferation effect against colorectal cancer cell line, HCT 116 and its possible mechanism of action was elucidated. To determine the IC50 value, the MTT assay was used and its apoptosisinducing effect was investigated.
RESULTS: DBID inhibited the proliferation of HCT 116 cells with an IC50 of 9.32 µg/ml and significantly increased the levels of caspase -8, -9 and -3/7 in the treated cells compared to untreated cells. Apoptosis features in HCT 116 cell was detected in treated cells by using the AO/PI staining that confirmed that the cells had undergone remarkable morphological changes in apoptotic bodies. Furthermore, this changes in expression of caspase -8, -9 and -3 were confirmed by gene and protein quantification using RT-PCR and western blot analysis, respectively.
CONCLUSION: The current study showed that the DBID compound has demonstrated chemotherapeutic activity which was evidenced by significant increases in the expression and activation of caspase and exploit the apoptotic signaling pathways to trigger cancer cell death.
DESIGN: Retrospective study.
METHODS: Based on the mean deviation (MD) of the Humphrey Field Analyzer (HFA), the 152 subjects were categorized into mild (MD > - 6 dB, 100), moderate (MD - 6 to - 12 dB, 26), and severe (MD
OBJECTIVE: To investigate the effects of electrical stimulation of the tragus on autonomic outputs in the rat and probe the underlying neural pathways.
METHODS: Central neuronal projections from nerves innervating the external auricle were investigated by injections of the transganglionic tracer cholera toxin B chain (CTB) into the right tragus of Wistar rats. Physiological recordings of heart rate, perfusion pressure, respiratory rate and sympathetic nerve activity were made in an anaesthetic free Working Heart Brainstem Preparation (WHBP) of the rat and changes in response to electrical stimulation of the tragus analysed.
RESULTS: Neuronal tracing from the tragus revealed that the densest CTB labelling was within laminae III-IV of the dorsal horn of the upper cervical spinal cord, ipsilateral to the injection sites. In the medulla oblongata, CTB labelled afferents were observed in the paratrigeminal nucleus, spinal trigeminal tract and cuneate nucleus. Surprisingly, only sparse labelling was observed in the vagal afferent termination site, the nucleus tractus solitarius. Recordings made from rats at night time revealed more robust sympathetic activity in comparison to day time rats, thus subsequent experiments were conducted in rats at night time. Electrical stimulation was delivered across the tragus for 5 min. Direct recording from the sympathetic chain revealed a central sympathoinhibition by up to 36% following tragus stimulation. Sympathoinhibition remained following sectioning of the cervical vagus nerve ipsilateral to the stimulation site, but was attenuated by sectioning of the upper cervical afferent nerve roots.
CONCLUSIONS: Inhibition of the sympathetic nervous system activity upon electrical stimulation of the tragus in the rat is mediated at least in part through sensory afferent projections to the upper cervical spinal cord. This challenges the notion that tragal stimulation is mediated by the auricular branch of the vagus nerve and suggests that alternative mechanisms may be involved.