Displaying publications 1 - 20 of 42 in total

Abstract:
Sort:
  1. Har LW, Shaari K, Boon LH, Kamarulzaman FA, Ismail IS
    Nat Prod Commun, 2012 Aug;7(8):1033-6.
    PMID: 22978223
    Two new phloroglucinol derivatives, identified as anthuminoate (1) and anthuminone (2), were isolated from the ichthyotoxic ethyl acetate fraction of Syzygium polyanthum leaves. In addition, bioassay-guided fractionation followed by dereplication of the photocytotoxic fraction of this plant part has resulted in the identification of five known pheophorbides as the bioactive constituents. The compounds were identified as pheophorbide-a, methyl pheophorbide-a, methyl hydroxypheophorbide-a, pheophorbide-b and hydroxypheophorbide-b. Inhibition of cell viability shown by the compounds ranged from 83.3 to 86.1% at a test concentration of 5 microg/mL. This shows that Syzygium polyanthum leaves are a potential new source in the studies of photocytotoxicity for photodynamic therapy.
    Matched MeSH terms: Syzygium/chemistry*
  2. Santos GP, Miranda BM, Di-Medeiros MCB, Almeida VO, Ferreira RD, Morais DAB, et al.
    Carbohydr Res, 2024 Jan;535:109008.
    PMID: 38103463 DOI: 10.1016/j.carres.2023.109008
    This work presents the characterization of a novel naturally phosphorylated starch extracted from an unconventional and non-utilized source, the seeds of the stone fruit Syzygium malaccense. The morphology and chemical characteristics of the extracted starch were examined by scanning electron microscopy, FTIR, 1H/13C/31P NMR and 13C-CP/MAS-NMR, HPAEC-PAD chromatography, XRD, DSC, and RVA. The extraction yielded a highly pure starch (95.6 %) with an average granule size of 13 μm. The analysis of the starch components revealed an amylose content of 28.1 % and a predominance (65 %) of B-chains (B1-B3 65 %) in the amylopectin, as shown through HPAEC-PAD chromatography. The X-ray diffractogram was compatible with B-type starch, which was confirmed by the deconvolution of the C1 peak in the 13C-CP/MAS-NMR. X-Ray diffractogram also showed that S. malaccense has 28.5 % of crystallinity. DSC analysis showed values of 82.6 °C and -12.41 J g-1 for Tc and ΔH, respectively, which is compatible with a highly ordered starch granule structure. The values observed for peak (4678 mPa•s), trough (3055 mPa•s), and final viscosity (6526 mPa•s) indicated that S. malaccense may be used as a thickener in hot food.
    Matched MeSH terms: Syzygium*
  3. Khandaker MM, Boyce AN, Osman N
    Plant Physiol Biochem, 2012 Apr;53:101-10.
    PMID: 22349652 DOI: 10.1016/j.plaphy.2012.01.016
    The present study represents the first report of the effect of hydrogen peroxide (H(2)O(2)) on the growth, development and quality of the wax apple fruit, a widely cultivated fruit tree in South East Asia. The wax apple trees were spray treated with 0, 5, 20 and 50 mM H(2)O(2) under field conditions. Photosynthetic rates, stomatal conductance, transpiration, chlorophyll and dry matter content of the leaves and total soluble solids and total sugar content of the fruits of wax apple (Syzygium samarangense, var. jambu madu) were significantly increased after treatment with 5 mM H(2)O(2). The application of 20 mM H(2)O(2) significantly reduced bud drop and enhanced fruit growth, resulting in larger fruit size, increased fruit set, fruit number, fruit biomass and yield compared to the control. In addition, the endogenous level of H(2)O(2) in wax apple leaves increased significantly with H(2)O(2) treatments. With regard to fruit quality, 20 mM H(2)O(2) treatment increased the K(+), anthocyanin and carotene contents of the fruits by 65%, 67%, and 41%, respectively. In addition, higher flavonoid, phenol and soluble protein content, sucrose phosphate synthase (SPS), phenylalanine ammonia lyase (PAL) and antioxidant activities were recorded in the treated fruits. There was a positive correlation between peel colour (hue) and TSS, between net photosynthesis and SPS activity and between phenol and flavonoid content with antioxidant activity in H(2)O(2)-treated fruits. It is concluded that spraying with 5 and 20 mM H(2)O(2) once a week produced better fruit growth, maximising the yield and quality of wax apple fruits under field conditions.
    Matched MeSH terms: Syzygium/anatomy & histology; Syzygium/drug effects*; Syzygium/physiology
  4. Aisha AF, Ismail Z, Abu-Salah KM, Siddiqui JM, Ghafar G, Abdul Majid AM
    PMID: 23842450 DOI: 10.1186/1472-6882-13-168
    Syzygium campanulatum Korth (Myrtaceae) is an evergreen shrub rich in phenolics, flavonoid antioxidants, and betulinic acid. This study sought to investigate antiangiogenic and anti-colon cancer effects of S.C. standardized methanolic extract.
    Matched MeSH terms: Syzygium/chemistry*
  5. Manaharan T, Ming CH, Palanisamy UD
    Food Chem, 2013 Jan 15;136(2):354-63.
    PMID: 23122070 DOI: 10.1016/j.foodchem.2012.08.056
    The insulin-like and/or insulin-sensitising effects of Syzygium aqueum leaf extract and its six bioactive compounds; 4-hydroxybenzaldehyde, myricetin-3-O-rhamnoside, europetin-3-O-rhamnoside, phloretin, myrigalone-G and myrigalone-B were investigated in 3T3-L1 adipocytes. We observed that, S. aqueum leaf extract (0.04-5 μg/ml) and its six bioactive compounds (0.08-10 μM) at non-cytotoxic concentrations were effectively enhance adipogenesis, stimulate glucose uptake and increase adiponectin secretion in 3T3-L1 adipocytes. Clearly, the compounds myricetin-3-O-rhamnoside and europetin-3-O-rhamnoside showed insulin-like and insulin-sensitising effects on adipocytes from a concentration of 0.08 μM. These compounds were far better than rosiglitazone and the other isolated compounds in enhancing adipogenesis, stimulating 2-NBDG uptake and increasing adiponectin secretion at all the concentrations tested. These suggest the antidiabetic potential of S. aqueum leaf extract and its six bioactive compounds. However, further molecular interaction studies to explain the mechanisms of action are highly warranted.
    Matched MeSH terms: Syzygium/chemistry*
  6. Palanisamy UD, Ling LT, Manaharan T, Sivapalan V, Subramaniam T, Helme MH, et al.
    Int J Cosmet Sci, 2011 Jun;33(3):269-75.
    PMID: 21284663 DOI: 10.1111/j.1468-2494.2010.00637.x
    Syzygium aqueum, a species in the Myrtaceae family, commonly called the water jambu is native to Malaysia and Indonesia. It is well documented as a medicinal plant, and various parts of the tree have been used in traditional medicine, for instance as an antibiotic. In this study, we show S. aqueum leaf extracts to have a significant composition of phenolic compounds, protective activity against free radicals as well as low pro-oxidant capability. Its ethanolic extract, in particular, is characterized by its excellent radical scavenging activity of EC(50) of 133 μg mL(-1) 1,1-diphenyl-2-picryl-hydrazyl (DPPH), 65 μg mL(-1) 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) and 71 μg mL(-1) (Galvinoxyl), low pro-oxidant capabilities and a phenolic content of 585-670 mg GAE g(-1) extract. The extract also displayed other activities, deeming it an ideal cosmetic ingredient. A substantial tyrosinase inhibition activity with an IC(50) of about 60 μg mL(-1) was observed. In addition, the extract was also found to have anti-cellulite activity tested for its ability to cause 98% activation of lipolysis of adipocytes (fat cells) at a concentration of 25 μg mL(-1). In addition, the extract was not cytotoxic to Vero cell lines up to a concentration of 600 μg mL(-1). Although various parts of this plant have been used in traditional medicine, this is the first time it has been shown to have cosmeceutical properties. Therefore, the use of this extract, alone or in combination with other active principles, is of interest to the cosmetic industry.
    Matched MeSH terms: Syzygium/chemistry*
  7. Sharma C, Ansari S, Ansari MS, Satsangee SP, Srivastava MM
    Mater Sci Eng C Mater Biol Appl, 2020 Nov;116:111153.
    PMID: 32806256 DOI: 10.1016/j.msec.2020.111153
    In present work, we demonstrate a single step environmentally benign approach to synthesize Au/Ag bimetallic nanoparticles (BMNPs) using aqueous extract of Clove buds for the first time. Clove bud's (CB) extract has proficiency to act as a reducing and stabilizing agent for the formation of Au/Ag BMNPs. In presence of extract, AuIII and AgI are reduced competitively within same solution and produce Au/Ag alloy NPs. The kinetics besides the formation of NPs was studied using UV-visible spectroscopy and efficiency of the extract was monitored by varying contact time, temperature, pH and extract concentration. The electron microscopic studies revealed the presence of NPs with peculiar morphology at alkaline pH. Further, the existence of Au and Ag atoms was investigated using energy dispersive X-ray (EDX), X-ray diffraction (XRD) and cyclic voltammetry (CV) techniques. Fourier transform infrared spectroscopy (FTIR) showed that Eugenol in the extract is mainly responsible for the production of NPs which are also surrounded by various phytochemicals. Zeta potential of all the NPs is found to be negative which prevents their agglomeration due to inter-repulsion and the biosynthesized Au/Ag BMNPs revealed greater catalytic efficiency for the degradation of methyl orange (MO), methylene blue (MB) and reduction of p-nitrophenol (p-NP). Significant enhancement induced by BMNPs compared to individual monometallic nanoparticles (MMNPs) was assigned to the synergistic effect of MMNPs and coating of phytochemicals present in the CB extract.
    Matched MeSH terms: Syzygium*
  8. MyJurnal
    This study was conducted to evaluate antimicrobial properties of ethanolic extracts of the leaves of Nephelium lappaceum, Curcuma longa, Cinnamomun cassia, Durio zibethinus, Vitex trifolia, Amaranthus tricolor, Syzygium samarangense and Manihot esculenta. Antibacterial properties of the extracts were studied against fifteen strains of different gram positive and gram negative pathogenic bacteria, including Bacillus cereus, Listeria monocytogenes, Staphylococcus aureus, Vibrio para, and Escherichia coli using the agar disk diffusion method. Among the tested extracts, only Amaranthus tricolor exhibited specific inhibition of one of the tested bacteria; Bacillus cereus. Using the microdilution method, its minimum inhibitory concentration (MIC) value was determined to be 20 mg/mL.
    Matched MeSH terms: Syzygium
  9. Dorairaj D, Suradi MF, Mansor NS, Osman N
    PeerJ, 2020;8:e9595.
    PMID: 32904129 DOI: 10.7717/peerj.9595
    Globally, there has been an increase in the frequency of landslides which is the result of slope failures. The combination of high intensity rainfall and high temperature resulted in the formation of acidic soil which is detrimental to the healthy growth of plants. Proper plant coverage on slopes is a prerequisite to mitigate and rehabilitate the soil. However, not all plant species are able to grow in marginal land. Thus, this study was undertaken to find a suitable slope plant species. We aimed to evaluate the effect of different soil pH on root profiles and growth of three different potential slope plant species namely, Melastoma malabathricum, Hibiscus rosa-sinensis and Syzygium campanulatum. M. malabathricum showed the highest tolerance to acidic soil as it recorded the highest plant height and photosynthetic rate. The root systems of M. malabathricum, H. rosa-sinensis and S. campanulatum were identified as M, VH- and R-types, respectively. The study proposed M. malabathricum which possessed dense and shallow roots to be planted at the toe or top of the slope while H. rosa-sinensis and S. campanulatum to be planted in the middle of a slope. S. campanulatum consistently recorded high root length and root length density across all three types of soil pH while M. malabathricum showed progressive increase in length as the soil pH increased. The root average diameter and root volume of M. malabathricum outperformed the other two plant species irrespective of soil pH. In terms of biomass, M. malabathricum exhibited the highest root and shoot dry weights followed by S. campanulatum. Thus, we propose M. malabathricum to be planted on slopes as a form of soil rehabilitation. The plant species displayed denser rooting, hence a stronger root anchorage that can hold the soil particles together which will be beneficial for slope stabilization.
    Matched MeSH terms: Syzygium
  10. Lim, A.S.L., Rabeta, M.S.
    MyJurnal
    The aim of this study is to determine the antioxidant capacity of underutilized fruits in Malaysia namely Milk apple (Syzygium malaccense), Malay apple (Syzygium malaccense (L.) Merr. and Perry), and Water apple (Syzygium aqueum). Synthetic antioxidants (BHA and BHT) commonly used in the food industries may not be as safe as it was presumed earlier. As BHA and BHT may be carcinogenic, it is important to look for new sources of natural antioxidants from fruits and vegetables. Freeze dried samples extracted with acetone and water were measured by ferric 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging and Ferric Reducing Antioxidant Power (FRAP) assays. Acetone extract (50%) showed higher values for both DPPH and FRAP assays compared with water extract. Milk apple has the highest DPPH value of 95.26% inhibition of DPPH. Milk apple also showed the highest FRAP value with 8722.22 µM of Fe (II) per gram of freeze dried sample. There was a significant difference (P < 0.05) in the types of extraction used. Antioxidant capacities of the samples are in the following order: Milk apple > Malay apple > Water apple. Proximate compositions and mineral contents of the samples were determined too. The samples can be used as a source of natural antioxidants.
    Matched MeSH terms: Syzygium
  11. Arumugam B, Palanisamy UD, Chua KH, Kuppusamy UR
    Mol Vis, 2019;25:47-59.
    PMID: 30820141
    Purpose: Oxidative stress is implicated in the etiology of diabetes and its debilitating complications, such as diabetic retinopathy (DR). Various flavonoids have been reported to be useful in reducing DR progression. Myricetin derivatives (F2) isolated from leaf extract of Syzygium malaccense have the potential to serve as functional food as reported previously. The present study was performed with the aim of determining the antioxidant potential and protective effect of myricetin derivatives (F2) isolated from leaf extract of S. malaccense against glucose oxidase (GO)-induced hydrogen peroxide (H2O2) production that causes oxidative stress in ARPE-19 (RPE) cells.

    Methods: Antioxidant properties were assessed through various radical (DPPH, ABTS, and nitric oxide) scavenging assays and determination of total phenolic content and ferric reducing antioxidant power level. ARPE-19 cells were preincubated with samples before the addition of GO (to generate H2O2). Cell viability, change in intracellular reactive oxygen species (ROS), H2O2 levels in cell culture supernatant, and gene expression were assessed.

    Results: F2 showed higher antioxidant levels than the extract when assessed for radical scavenging activities and ferric reducing antioxidant power. F2 protected the ARPE-19 cells against GO-H2O2-induced oxidative stress by reducing the production of H2O2 and intracellular reactive oxygen species. This was achieved by the activation of nuclear factor erythroid 2-related factor 2 (Nrf2/NFE2L2) and superoxide dismutase (SOD2), as well as downregulation of nitric oxide producer (NOS2) at the transcriptional level.

    Conclusions: The results showed that myricetin derivatives from S. malaccense have the capacity to exert considerable exogenous antioxidant activities and stimulate endogenous antioxidant activities. Therefore, these derivatives have excellent potential to be developed as therapeutic agents for managing DR.

    Matched MeSH terms: Syzygium/chemistry*
  12. Ghayur MN, Gilani AH, Khan A, Amor EC, Villaseñor IM, Choudhary MI
    Phytother Res, 2006 Jan;20(1):49-52.
    PMID: 16397921
    Syzygium samarangense (Family; Myrtaceae) or 'makopa', as it is commonly known, is native to Malaysia, some islands of Indonesia and to Far East in general. This study was undertaken to rationalize the use of this plant in hypermotility states of the gut. The hexane extract of S. samarangense (Ss.Hex) was found to dose-dependently (10-3000 microg/mL) relax the spontaneously contracting isolated rabbit jejunum. When tested for a possible calcium channel blocking (CCB) activity, the extract (10-1000 microg/mL) relaxed the high K+-induced contractions and also decreased the Ca++ dose-response curves in a dose-dependent manner (30-100 microg/mL), confirming the CCB activity. Four flavonoids isolated from the hexane extract were tested for a possible spasmolytic activity. All flavonoids, identified as: 2'-hydroxy-4',6'-dimethoxy-3'-methylchalcone (SS1), 2',4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone (SS2), 2',4'-dihydroxy-6'-methoxy-3'-methylchalcone (SS3) and 7-hydroxy-5-methoxy-6,8-dimethylflavanone (SS4), showed dose-dependent (10-1000 microg/mL) spasmolytic activity with SS2 being the most potent. These results indicate that the presence of compounds with spasmolytic and calcium antagonist activity may be responsible for the medicinal use of the plant in diarrhoea.
    Matched MeSH terms: Syzygium/chemistry*
  13. Moneruzzaman Khandaker M, Nasrulhaq Boyce A, Osman N, Sharif Hossain A
    ScientificWorldJournal, 2012;2012:728613.
    PMID: 22701370 DOI: 10.1100/2012/728613
    This study represents the first paper of the effects of growth regulators on the physiochemical and phytochemical properties of the wax apple fruit, a widely cultivated fruit tree in southeast Asia. Net photosynthesis, sucrose phosphate synthase (SPS) activity, peel color, fruit firmness, juice content, pH value, total soluble solids (TSSs), and the sugar acid ratio were all significantly increased in growth regulators (PGRs) treated fruits. The application of gibberellin (GA(3)), naphthalene acetic acid (NAA), and 2,4-dichlorophenoxy acetic acid (2,4-D) significantly reduced titratable acidity and increased total sugar and carbohydrate content compared to the control. The 50 mg/L GA₃, 10 mg/L NAA, and 5 mg/L 2,4-D treatments produced the greatest increases in phenol and flavonoid content; vitamin C content was also higher for these treatments. PGR treatment significantly affected chlorophyll, anthocyanin, and carotene content and produced higher phenylalanine ammonia lyase (PAL) and antioxidant activity levels. There was a positive correlation between peel color and TSS and antioxidant activity and both phenol and flavonoid content and PAL activity and anthocyanin formation. A taste panel assessment was also performed, and the highest scores were given to fruits that had been treated with GA₃ or auxin. The study showed that application of 50 mg/L GA₃, 10 mg/L NAA, and 5 mg/L 2,4-D once a week from bud development to fruit maturation increased the physiochemical and phytochemical properties of wax apple fruits.
    Matched MeSH terms: Syzygium/drug effects*; Syzygium/chemistry*
  14. Shamsudin KJ, Phan CS, Kulip J, Hatai K, Vairappan CS, Kamada T
    J Asian Nat Prod Res, 2019 May;21(5):435-441.
    PMID: 29502443 DOI: 10.1080/10286020.2018.1440391
    The medicinal plant, Syzygium leucoxylon or commonly known as Obah found in North Borneo was considered as traditional medicine by local committee. Two new phenolics, leucoxenols A (1) and B (2) were isolated and identified as major secondary metabolites from the leaves of S. leucoxylon. Their chemical structures were elucidated based on spectroscopic data such as NMR and HRESIMS. Furthermore, these compounds were active against selected strains of fungi.
    Matched MeSH terms: Syzygium/chemistry*
  15. Ang HH
    Food Chem Toxicol, 2008 Jun;46(6):1969-75.
    PMID: 18328612 DOI: 10.1016/j.fct.2008.01.037
    The Drug Control Authority (DCA) of Malaysia implemented the phase three registration of traditional medicines on 1 January, 1992. A total of 100 products in various pharmaceutical dosage forms of a herbal preparation, containing Eugenia dyeriana, either single or combined preparations (more than one medicinal plant), were analyzed for the presence of lead contamination, using atomic absorption spectrophotometry. These samples were bought from different commercial sources in the Malaysian market, after performing a simple random sampling. Results showed that 22% of the above products failed to comply with the quality requirement for traditional medicines in Malaysia. Although this study showed that 78% of the products fully complied with the quality requirement for traditional medicines in Malaysia pertaining to lead, however, they cannot be assumed safe from lead contamination because of batch-to-batch inconsistency.
    Matched MeSH terms: Syzygium/chemistry*
  16. Memon AH, Ismail Z, Aisha AF, Al-Suede FS, Hamil MS, Hashim S, et al.
    PMID: 25530783 DOI: 10.1155/2014/470179
    Syzygium campanulatum Korth is an equatorial, evergreen, aboriginal shrub of Malaysia. Conventionally it has been used as a stomachic. However, in the currently conducted study dimethyl cardamonin or 2',4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone (DMC) was isolated from S. campanulatum Korth, leaf extract. The structural characterization of DMC was carried out by making use of various techniques including UV, IR, NMR spectral followed by LC-MS, and X-ray crystallographic techniques. For determining the purity of compound, highly effective techniques including TLC, HPLC, and melting point were used. The cytotoxicity of DMC and three different extracts of S. campanulatum was evaluated against human colon cancer cell line (HT-29) by three different assays. DMC and ethanolic extract revealed potent and dose-dependent cytotoxic activity on the cancer cell line with IC50 12.6 and 90.1 µg/mL, respectively. Quite astonishingly to our knowledge, this is the very first report on S. campanulatum as being a rich source (3.5%) of DMC, X-ray crystallography, and anticancer activity on human colon cancer cells.
    Matched MeSH terms: Syzygium
  17. Memon AH, Ismail Z, Al-Suede FS, Aisha AF, Hamil MS, Saeed MA, et al.
    Molecules, 2015;20(8):14212-33.
    PMID: 26248073 DOI: 10.3390/molecules200814212
    Two flavanones named (2S)-7-Hydroxy-5-methoxy-6,8-dimethyl flavanone (1), (S)-5,7-dihydroxy-6,8-dimethyl-flavanone (2), along with known chalcone, namely, (E)-2',4'- dihydroxy-6'-methoxy-3',5'-dimethylchalcone (3) and two triterpenoids, namely, betulinic and ursolic acids (4 and 5), were isolated from the leaves of Syzygium campanulatum Korth (Myrtaceae). The structures of compounds (1 and 2) were determined on the basis of UV-visible, FTIR, NMR spectroscopies and LC-EIMS analytical techniques. Furthermore, new, simple, precise, selective, accurate, highly sensitive, efficient and reproducible RP-HPLC method was developed and validated for the quantitative analysis of the compounds (1-5) from S. campanulatum plants of five different age. RP-HPLC method was validated in terms of specificity, linearity (r2 ≤ 0.999), precision (2.0% RSD), and recoveries (94.4%-105%). The LOD and LOQ of these compounds ranged from 0.13-0.38 and 0.10-2.23 μg·mL-1, OPEN ACCESS respectively. Anti-proliferative activity of isolated flavanones (1 and 2) and standardized extract of S. campanulatum was evaluated on human colon cancer (HCT 116) cell line. Compounds (1 and 2) and extract revealed potent and dose-dependent activity with IC50 67.6, 132.9 and 93.4 μg·mL-1, respectively. To the best of our knowledge, this is the first study on isolation, characterization, X-ray crystallographic analysis of compounds (1 and 2) and simultaneous RP-HPLC determination of five major compounds (1-5) from different age of S. campanulatum plants.
    Matched MeSH terms: Syzygium/chemistry*
  18. Krishnan T, Yin WF, Chan KG
    Sensors (Basel), 2012;12(4):4016-30.
    PMID: 22666015 DOI: 10.3390/s120404016
    Quorum sensing controls the virulence determinants in most proteobacteria. In this work, the hexane, chloroform and methanol extracts of an Ayurveda spice, namely clove (Syzygium aromaticum), shown anti-quorum sensing activity. Hexane and methanol extracts of clove inhibited the response of C. violaceum CV026 to exogenously supplied N-hexanoylhomoserine lactone, in turn preventing violacein production. Chloroform and methanol extracts of clove significantly reduced bioluminescence production by E. coli [pSB1075] grown in the presence of N-(3-oxododecanoyl)-L-homoserine lactone. We demonstrated that clove extract inhibited quorum sensing-regulated phenotypes in Pseudomonas aeruginosa PA01, including expression of lecA::lux (by hexane extract), swarming (maximum inhibition by methanol extract), pyocyanin (maximum inhibition by hexane extract). This study shows that the presence of natural compounds that exhibit anti-quorum sensing activity in the clove extracts may be useful as the lead of anti-infective drugs.
    Matched MeSH terms: Syzygium/chemistry*
  19. Manaharan T, Chakravarthi S, Radhakrishnan AK, Palanisamy UD
    Toxicol Rep, 2014;1:718-725.
    PMID: 28962285 DOI: 10.1016/j.toxrep.2014.09.006
    In this study, the acute and subchronic toxicity effect of the Syzygium aqueum leaf extract (SA) was evaluated. For the acute toxicity study, a single dose of 2000 mg/kg of the SA was given by oral-gavage to male Sprague-Dawley (SD) rats. The rats were observed for mortality and toxicity signs for 14 days. In the subchronic toxicity study the SA was administered orally at doses of 50, 100, and 200 mg/kg per day for 28 days to male SD rats. The animals were sacrificed at the end of the experiment. The parameters measured including food and water intake, body weight, absolute and relative organ weight, blood biochemical tests and histopathology observation. In both the acute and subchronic toxicity studies, SA did not show any visible signs of toxicity. There were also no significant differences between the control and SA treated rats in terms of their food and water intake, body weight, absolute and relative organ weight, biochemical parameters or gross and microscopic appearance of the organs. There were no acute or subchronic toxicity observed and our results indicate that this extract could be devoid of any toxic risk. This is the first in vivo study reported the safety and toxicity of SA.
    Matched MeSH terms: Syzygium
  20. Intan S. Ismail, NorAkmar Ismail, Nordin Lajis
    MyJurnal
    The preliminary ichthyotoxic test on all parts of Syzygium malaccense (Myrtaceae) revealed that the leaves fraction was the most ichthyotoxic against tilapia-fish (Tilapia oreochromis). Three compounds, namely ursolic acid (1), β-sitosterol (2) and sitost-4-en-3-one (3), were isolated and their structures were elucidated with the aid of spectroscopic data and comparison with previously reported investigations. However none of these compounds gave any significant ichthyotoxicity. The volatile constituents of the leaves and fruit were determined by Gas Chromatography-Mass Spectrometer (GC-MS), with 180 and 203 compounds being identified in the aroma concentrates, respectively.
    Matched MeSH terms: Syzygium
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links