Displaying publications 3661 - 3680 of 10390 in total

Abstract:
Sort:
  1. Jamion NA, Lee KE, Mokhtar M, Goh TL
    Environ Sci Pollut Res Int, 2024 Mar;31(11):16291-16308.
    PMID: 38315340 DOI: 10.1007/s11356-024-32140-4
    Ex-mining lake-converted constructed wetlands play a significant role in the carbon cycle, offering a great potential to sequester carbon and mitigate climate change and global warming. Investigating the quantity of carbon storage capacity of ex-mining lake-converted constructed wetlands provides information and justification for restoration and conservation efforts. The present study aims to quantify the carbon pool of the ex-mining lake-converted constructed wetlands and characterise the physicochemical properties of the soil and sediment. Pearson's correlation and a one-way ANOVA were performed to compare the different sampling stations at Paya Indah Wetland, Selangor, Malaysia. An analysis of 23 years of ex-mining lake-converted constructed wetlands of Paya Indah Wetlands, Selangor, Malaysia, revealed that the estimated total carbon pool in soil and sediment accumulated to 1553.11 Mg C ha-1 (equivalent to 5700 Mg CO2 ha-1), which translates to an annual carbon sink capacity of around 67.5 Mg C ha-1 year-1. The characterisation showed that the texture of all soil samples was dominated by silt, whereas sediments exhibited texture heterogeneity. Although the pH of the soil and sediment was both acidic, the bulk density was still optimal for plant growth and did not affect root growth. FT-IR and WDXRF results supported that besides the accumulation and degradation of organic substances, which increase the soil and sediment carbon content, mineral carbonation is a mechanism by which soil and sediment can store carbon. Therefore, this study indicates that the ex-mining lake-converted constructed wetlands of Paya Indah Wetlands, Selangor, Malaysia have a significant carbon storage potential.
    Matched MeSH terms: Soil/chemistry
  2. Sulaiman SB, Keong TK, Cheng CH, Saim AB, Idrus RB
    Indian J Med Res, 2013 Jun;137(6):1093-101.
    PMID: 23852290
    Various materials have been used as scaffolds to suit different demands in tissue engineering. One of the most important criteria is that the scaffold must be biocompatible. This study was carried out to investigate the potential of HA or TCP/HA scaffold seeded with osteogenic induced sheep marrow cells (SMCs) for bone tissue engineering.
    Matched MeSH terms: Calcium Phosphates/chemistry*; Ceramics/chemistry; Fibrin/chemistry; Phosphates/chemistry; Durapatite/chemistry*; Bone Substitutes/chemistry*; Tissue Scaffolds/chemistry
  3. Alhindawi M, Rhouati A, Noordin R, Cialla-May D, Popp J, Zourob M
    Int J Biol Macromol, 2024 May;267(Pt 2):131509.
    PMID: 38608978 DOI: 10.1016/j.ijbiomac.2024.131509
    Giardia intestinalis is one of the most widespread intestinal parasites and is considered a major cause of epidemic or sporadic diarrhea worldwide. In this study, we aimed to develop a rapid aptameric diagnostic technique for G. intestinalis infection. First, the SELEX (Systematic Evolution of Ligands by Exponential Enrichment) process generated DNA aptamers specific to a recombinant protein of the parasite's trophozoite. Ten selection rounds were performed; each round, the DNA library was incubated with the target protein conjugated to Sepharose beads. Then, the unbound sequences were removed by washing and the specific sequences were eluted and amplified by Polymerase Chain Reaction (PCR). Two aptamers were selected, and the dissociation constants (Kd), were determined as 2.45 and 16.95 nM, showed their high affinity for the G. intestinalis trophozoite protein. Subsequently, the aptamer sequence T1, which exhibited better affinity, was employed to develop a label-free electrochemical biosensor. A thiolated aptamer was covalently immobilized onto a gold screen-printed electrode (SPGE), and the binding of the targeted protein was monitored using square wave voltammetry (SWV). The developed aptasensor enabled accurate detection of the G. intestinalis recombinant protein within the range of 0.1 pg/mL to 100 ng/mL, with an excellent sensitivity (LOD of 0.35 pg/mL). Moreover, selectivity studies showed a negligible cross-reactivity toward other proteins such as bovine serum albumin, globulin, and G. intestinalis cyst protein.
    Matched MeSH terms: DNA, Single-Stranded/chemistry
  4. Chang J, Liang J, Zhang Y, Zhang R, Fang W, Zhang H, et al.
    J Hazard Mater, 2024 May 15;470:134152.
    PMID: 38552398 DOI: 10.1016/j.jhazmat.2024.134152
    Soil contamination by emerging pollutants tetrabromobisphenol A (TBBPA) and microplastics has become a global environmental issue in recent years. However, little is known about the effect of microplastics on degradation of TBBPA in soil, especially aged microplastics. In this study, the effect of aged polystyrene (PS) microplastics on the degradation of TBBPA in soil and the mechanisms were investigated. The results suggested that the aged microplastics exhibited a stronger inhibitory effect on the degradation of TBBPA in soil than the pristine microplastics, and the degradation efficiency of TBBPA decreased by 21.57% at the aged microplastic content of 1%. This might be related to the higher TBBPA adsorption capacity of aged microplastics compared to pristine microplastics. Aged microplastics strongly altered TBBPA-contaminated soil properties, reduced oxidoreductase activity and affected microbial community composition. The decrease in soil oxidoreductase activity and relative abundance of functional microorganisms (e.g., Bacillus, Pseudarthrobacter and Sphingomonas) caused by aged microplastics interfered with metabolic pathways of TBBPA. This study indicated the importance the risk assessment and soil remediation for TBBPA-contaminated soil with aged microplastics.
    Matched MeSH terms: Soil/chemistry
  5. Kumar M, Kumar D, Chopra S, Mahmood S, Bhatia A
    Curr Pharm Des, 2023;29(44):3532-3545.
    PMID: 38151837 DOI: 10.2174/0113816128282478231219044000
    BACKGROUND: Over the past ten years, tremendous progress has been made in microbubble-based research for a variety of biological applications. Microbubbles emerged as a compelling and dynamic tool in modern drug delivery systems. They are employed to deliver drugs or genes to targeted regions of interest, and then ultrasound is used to burst the microbubbles, causing site-specific delivery of the bioactive materials.

    OBJECTIVE: The objective of this article is to review the microbubble compositions and physiochemical characteristics in relation to the development of innovative biomedical applications, with a focus on molecular imaging and targeted drug/gene delivery.

    METHODS: The microbubbles are prepared by using various methods, which include cross-linking polymerization, emulsion solvent evaporation, atomization, and reconstitution. In cross-linking polymerization, a fine foam of the polymer is formed, which serves as a bubble coating agent and colloidal stabilizer, resulting from the vigorous stirring of a polymeric solution. In the case of emulsion solvent evaporation, there are two solutions utilized in the production of microbubbles. In atomization and reconstitution, porous spheres are created by atomising a surfactant solution into a hot gas. They are encapsulated in primary modifier gas. After the addition of the second gas or gas osmotic agent, the package is placed into a vial and sealed after reconstituting with sterile saline solution.

    RESULTS: Microbubble-based drug delivery is an innovative approach in the field of drug delivery that utilizes microbubbles, which are tiny gas-filled bubbles, act as carriers for therapeutic agents. These microbubbles can be loaded with drugs, imaging agents, or genes and then guided to specific target sites.

    CONCLUSION: The potential utility of microbubbles in biomedical applications is continually growing as novel formulations and methods. The versatility of microbubbles allows for customization, tailoring the delivery system to various medical applications, including cancer therapy, cardiovascular treatments, and gene therapy.

    Matched MeSH terms: Contrast Media/chemistry
  6. Vitamia C, Iftinan GN, Latarissa IR, Wilar G, Cahyanto A, Elamin KM, et al.
    Drug Des Devel Ther, 2024;18:1297-1312.
    PMID: 38681204 DOI: 10.2147/DDDT.S449370
    Recurrent aphthous stomatitis (RAS) refers to a sore and frequently recurring inflammation of the oral tissues, distinguished by the presence of small ulcers that cause significant discomfort and cannot be attributed to any underlying disease. Different treatments have been used for RAS. This review aims to provide a comprehensive overview of the treatment options over the past decade for recurrent aphthous stomatitis (RAS), encompassing both natural and synthetic treatments. It will utilize clinical efficacy studies conducted in vivo and in vitro, along with a focus on the pharmaceutical approach through advancements in drug delivery development. We conducted a thorough literature search from 2013 to 2023 in prominent databases such as PubMed, Scopus, and Cochrane, utilizing appropriate keywords of recurrent aphthous stomatitis, and treatment. A total of 53 clinical trials with 3022 patients were included, with 35 using natural materials in their research and a total of 16 articles discussing RAS treatment using synthetic materials. All the clinical trials showed that natural and synthetic medicines seemed to benefit RAS patients by reducing pain score, ulcer size, and number of ulcers and shortening the healing duration.
    Matched MeSH terms: Biological Products/chemistry
  7. Hong KW, Koh CL, Sam CK, Yin WF, Chan KG
    J Bacteriol, 2012 Nov;194(22):6317.
    PMID: 23105060 DOI: 10.1128/JB.01578-12
    Burkholderia sp. strain GG4, isolated from the ginger rhizosphere, possesses a unique N-acylhomoserine lactone (AHL)-modifying activity that reduces 3-oxo-AHLs to 3-hydroxy-AHLs. To the best of our knowledge, this is the first sequenced genome from a bacterium of the genus Burkholderia that shows both quorum-sensing and signaling confusion activities.
    Matched MeSH terms: Lactones/chemistry*
  8. Humayun S, Hayyan M, Alias Y
    J Environ Sci (China), 2025 Jan;147:688-713.
    PMID: 39003083 DOI: 10.1016/j.jes.2023.11.021
    Innately designed to induce physiological changes, pharmaceuticals are foreknowingly hazardous to the ecosystem. Advanced oxidation processes (AOPs) are recognized as a set of contemporary and highly efficient methods being used as a contrivance for the removal of pharmaceutical residues. Since reactive oxygen species (ROS) are formed in these processes to interact and contribute directly toward the oxidation of target contaminant(s), a profound insight regarding the mechanisms of ROS leading to the degradation of pharmaceuticals is fundamentally significant. The conceptualization of some specific reaction mechanisms allows the design of an effective and safe degradation process that can empirically reduce the environmental impact of the micropollutants. This review mainly deliberates the mechanistic reaction pathways for ROS-mediated degradation of pharmaceuticals often leading to complete mineralization, with a focus on acetaminophen as a drug waste model.
    Matched MeSH terms: Water Pollutants, Chemical/chemistry
  9. Kiong M, Ashari A, Zamani NSM, How RAWM, Wahab RMA, Mohamed AMFS, et al.
    BMC Oral Health, 2024 May 07;24(1):538.
    PMID: 38715004 DOI: 10.1186/s12903-024-04284-9
    BACKGROUND: The introduction of auxiliaries such as composite attachment has improved the force delivery of clear aligner (CA) therapy. However, the placement of the attachment may give rise to a flash, defined as excess resin around the attachment which may affect CA force delivery. This in vitro study aims to determine the differences in the force generated by the attachment in the presence or absence of flash in CA.

    MATERIALS AND METHODS: Tristar Trubalance aligner sheets were used to fabricate the CAs. Thirty-four resin models were 3D printed and 17 each, were bonded with ellipsoidal or rectangular attachments on maxillary right central incisors. Fuji Prescale pressure film was used to measure the force generated by the attachment of CA. The images of colour density produced on the films were processed using a calibrated pressure mapping system utilising image processing techniques and topographical force mapping to quantify the force. The force measurement process was repeated after the flash was removed from the attachment using tungsten-carbide bur on a slow-speed handpiece.

    RESULTS: The intraclass correlation coefficient showed excellent reliability (ICC = 0.96, 95% CI = 0.92-0.98). The average mean force exerted by ellipsoidal attachments with flash was 8.05 ± 0.16 N, while 8.11 ± 0.18 N was without flash. As for rectangular attachments, the average mean force with flash was 8.48 ± 0.27 N, while 8.53 ± 0.13 N was without flash. Paired t-test revealed no statistically significant difference in the mean force exerted by CA in the presence or absence of flash for both ellipsoidal (p = 0.07) and rectangular attachments (p = 0.41). Rectangular attachments generated statistically significantly (p  0.05).

    Matched MeSH terms: Composite Resins/chemistry
  10. Alsaffar MS, Kabir NA
    Appl Radiat Isot, 2024 Sep;211:111413.
    PMID: 38944898 DOI: 10.1016/j.apradiso.2024.111413
    The plant acts as an important route for the transfer of radionuclides from the soil to animals, leading to the transfer of radiation to human food products such as beef and milk. Therefore, the level of radioactivity in fodder plays a crucial role in deciding whether cattle may be allowed to graze in a certain area. In this study, the activities of 226Ra, 232Th and 40K were measured via gamma-ray spectrometry on different fodder samples, including napier leaves, rice straw, corn stalks, guinea grass, mixed pasture, palm oil leaves and palm kernel collected from Penang, Malaysia. Theoretical calculations were also conducted to estimate the levels of these radionuclides in caw's products (beef and milk), as well as their potential radiological impact on local consumers. On average, the annual effective dose due to ingestion of radionuclides in milk was 11.39 μSv y-1, whereas in beef it was 5.63 μSv y-1. These values are significantly lower than the worldwide average of 290 μSv y-1. Research confirmed that farmers' usage of the aforementioned feeds did not cause any radiation-related health risks.
    Matched MeSH terms: Milk/chemistry
  11. Saifuddin SA, Rashid R, Nor Azmi NJ, Mohamad S
    J Microbiol Methods, 2024 Aug;223:106981.
    PMID: 38945305 DOI: 10.1016/j.mimet.2024.106981
    In recent years, loop-mediated isothermal amplification (LAMP) has gained popularity for detecting various pathogen-specific genes due to its superior sensitivity and specificity compared to conventional polymerase chain reaction (PCR). The simplicity and flexibility of naked-eye detection of the amplicon make LAMP an ideal rapid and straightforward diagnostic tool, especially in resource-limited laboratories. Colorimetric detection is one of the simplest and most straightforward among all detection methods. This review will explore various colorimetric dyes used in LAMP techniques, examining their reaction mechanisms, advantages, limitations and latest applications.
    Matched MeSH terms: Coloring Agents/chemistry
  12. Khan SS, Kour D, Kaur T, Sharma A, Kumar S, Kumari S, et al.
    Curr Microbiol, 2024 Jul 01;81(8):251.
    PMID: 38954017 DOI: 10.1007/s00284-024-03772-z
    A new area of biotechnology is nanotechnology. Nanotechnology is an emerging field that aims to develope various substances with nano-dimensions that have utilization in the various sectors of pharmaceuticals, bio prospecting, human activities and biomedical applications. An essential stage in the development of nanotechnology is the creation of nanoparticles. To increase their biological uses, eco-friendly material synthesis processes are becoming increasingly important. Recent years have shown a lot of interest in nanostructured materials due to their beneficial and unique characteristics compared to their polycrystalline counterparts. The fascinating performance of nanomaterials in electronics, optics, and photonics has generated a lot of interest. An eco-friendly approach of creating nanoparticles has emerged in order to get around the drawbacks of conventional techniques. Today, a wide range of nanoparticles have been created by employing various microbes, and their potential in numerous cutting-edge technological fields have been investigated. These particles have well-defined chemical compositions, sizes, and morphologies. The green production of nanoparticles mostly uses plants and microbes. Hence, the use of microbial nanotechnology in agriculture and plant science is the main emphasis of this review. The present review highlights the methods of biological synthesis of nanoparticles available with a major focus on microbially synthesized nanoparticles, parameters and biochemistry involved. Further, it takes into account the genetic engineering and synthetic biology involved in microbial nanobiosynthesis to the construction of microbial nanofactories.
    Matched MeSH terms: Nanostructures/chemistry
  13. Wahyuni DK, Kharisma VD, Murtadlo AAA, Rahmawati CT, Syukriya AJ, Prasongsuk S, et al.
    BMC Complement Med Ther, 2024 Jul 18;24(1):272.
    PMID: 39026301 DOI: 10.1186/s12906-024-04573-4
    BACKGROUND: Cymbopogon is a member of the family Poaceae and has been explored for its phytochemicals and bioactivities. Although the antimicrobial activities of Cymbopogon spp. extracts have been extensively studied, comprehensive analyses are required to identify promising compounds for the treatment of antimicrobial resistance. Therefore, this study investigated the antioxidant and antimicrobial properties of Cymbopogon spp. ethanolic extracts in every single organ.

    METHODS: Ethanolic extracts were obtained from three Indonesian commercial species of Cymbopogon spp., namely Cymbopogon citratus (L.) Rendle, Cymbopogon nardus (DC.) Spatf., and Cymbopogon winterianus Jowitt. The leaf, stem, and root extracts were evaluated via metabolite profiling using gas chromatography-mass spectrometry (GC-MS). In silico and in vitro analyses were used to evaluate the antioxidant and antimicrobial properties of the Cymbopogon spp. ethanolic extracts. In addition, bioactivity was measured using cytotoxicity assays. Antioxidant assays were performed using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2-azino-bis [3-ethylbenzothiazoline-6-sulfonic acid (ABTS) to determine toxicity to Huh7it-1 cells using a tetrazolium bromide (MTT) assay. Finally, the antimicrobial activity of these extracts was evaluated against Candida albicans, Bacillus subtilis, Staphylococcus aureus, and Escherichia coli using a well diffusion assay.

    RESULTS: GC-MS analysis revealed 53 metabolites. Of these, 2,5-bis(1,1-dimethylethyl)- phenol (27.87%), alpha-cadinol (26.76%), and 1,2-dimethoxy-4-(1-propenyl)-benzene (20.56%) were the predominant compounds. C. winterianus and C. nardus leaves exhibited the highest antioxidant activity against DPPH and ABTS, respectively. Contrastingly, the MTT assay showed low cytotoxicity. C. nardus leaf extract exhibited the highest antimicrobial activity against E. coli and S. aureus, whereas C. winterianus stem extract showed the highest activity against B. substilis. Furthermore, computational pathway analysis predicted that antimicrobial activity mechanisms were related to antioxidant activity.

    CONCLUSIONS: These findings demonstrate that the leaves had strong antioxidant activity, whereas both the leaves and stems showed great antimicrobial activity. Furthermore, all Cymbopogon spp. ethanolic extracts showed low toxicity. These findings provide a foundation for future studies that assess the clinical safety of Cymbopogon spp. as novel drug candidates.

    Matched MeSH terms: Plant Stems/chemistry
  14. Mat Noor NA, Shafie S, Admon MA
    PLoS One, 2021;16(5):e0250402.
    PMID: 33956793 DOI: 10.1371/journal.pone.0250402
    The heat and mass transfer on time dependent hydrodynamic squeeze flow of Jeffrey nanofluid across two plates over permeable medium in the slip condition with heat generation/absorption, thermal radiation and chemical reaction are investigated. The impacts of Brownian motion and thermophoresis is examined in the Buongiorno's nanofluid model. Conversion of the governing partial differential equations to the ordinary differential equations is conducted via similarity transformation. The dimensionless equations are solved by imposing numerical method of Keller-box. The outputs are compared with previous reported works in the journals for the validation of the present outputs and found in proper agreement. The behavior of velocity, temperature, and nanoparticles concentration profiles by varying the pertinent parameters are examined. Findings portray that the acceleration of the velocity profile and the wall shear stress is due to the squeezing of plates. Furthermore, the velocity, temperature and concentration profile decline with boost in Hartmann number and ratio of relaxation to retardation times. It is discovered that the rate of heat transfer and temperature profile increase when viscous dissipation, thermophoresis and heat source/sink rises. In contrast, the increment of thermal radiation reduces the temperature and enhances the heat transfer rate. Besides, the mass transfer rate decelerates for increasing Brownian motion in nanofluid, while it elevates when chemical reaction and thermophoresis increases.
    Matched MeSH terms: Nanoparticles/chemistry
  15. Kadir NAAA, Azlan A, Abas F, Ismail IS
    Molecules, 2021 Sep 13;26(18).
    PMID: 34577016 DOI: 10.3390/molecules26185545
    There has been growing interest among food scientists in producing a toxin-free fat as an end product with varying physical or nutritional properties of interest to the food industry. Oleoresin is a rich source of bioactive compounds which consumers can easily add to a large variety of food. Dabai (Canarium odontophyllum) pulp oleoresin (DPL) was extracted using supercritical carbon dioxide (SC-CO2) extraction, a green extraction technology. This study investigates the quality of SC-CO2 extracted DPL in discovering its potential as a new alternative fat. The extraction experiment was carried out at a pressure of 40 MPa and a temperature of 40 °C. DPL is a saturated fatty acid (SFA)-rich fat due to its high SFA composition (47.72 ± 0.01%). In addition, the low content of peroxide value (PV) (5.60 ± 0.09 mEq/kg) and free fatty acids (FFA) (3.40 ± 0.03%) indicate the quality and stability of DPL for various applications besides food consumption. DPL also has a low slip melting point (SMP) (20.20 ± 0.03 °C), and HPLC-FID revealed that DPL contained 0.13 ± 0.02 mg/100 g of vitamin E (α-tocopherol), indicating its potential application as a solid fat with a bioactive compound. This present work demonstrates the possible prospect of DPL in the formulation of end products for food industries.
    Matched MeSH terms: Fatty Acids/chemistry
  16. Syafri E, Jamaluddin, Sari NH, Mahardika M, Amanda P, Ilyas RA
    Int J Biol Macromol, 2022 Mar 01;200:25-33.
    PMID: 34971644 DOI: 10.1016/j.ijbiomac.2021.12.111
    Nanocellulose is a renewable and biocompatible nanomaterial that evokes much interest because of its versatility in various applications. This study reports the production of nanocellulose from Agave gigantea (AG) fiber using the chemical-ultrafine grinding treatment. Chemical treatment (alkalization and bleaching) removed non-cellulose components (hemicellulose and lignin), while ultrafine grinding reduced the size of cellulose microfibrils into nanocellulose. From the observation of Transmission Electron Microscopy, the average diameter of nanocellulose was 4.07 nm. The effect of chemical-ultrafine grinding on the morphology and properties of AG fiber was identified using chemical composition, Scanning Electron Microscopy, X-ray Diffraction, Fourier Transform Infrared, and Thermogravimetric Analysis. The bleaching treatment increased the crystal index by 48.3% compared to raw AG fiber, along with an increase in the cellulose content of 20.4%. The ultrafine grinding process caused a decrease in the crystal content of the AG fiber. The crystal index affected the thermal stability of the AG fiber. The TGA results showed that AG fiber treated with bleaching showed the highest thermal stability compared to AG fiber without treatment. The FTIR analysis showed that the presence of CH vibrations from the ether in the fiber. After chemical treatment, the peaks at 1605 and 1243 cm-1 disappeared, indicating the loss of lignin and hemicellulose functional groups in AG fiber. As a result, nanocellulose derived from AG fiber can be applied as reinforcement in environmentally friendly polymer biocomposites.
    Matched MeSH terms: Lignin/chemistry
  17. Sillitoe I, Andreeva A, Blundell TL, Buchan DWA, Finn RD, Gough J, et al.
    Nucleic Acids Res, 2020 Jan 08;48(D1):D314-D319.
    PMID: 31733063 DOI: 10.1093/nar/gkz967
    Genome3D (https://www.genome3d.eu) is a freely available resource that provides consensus structural annotations for representative protein sequences taken from a selection of model organisms. Since the last NAR update in 2015, the method of data submission has been overhauled, with annotations now being 'pushed' to the database via an API. As a result, contributing groups are now able to manage their own structural annotations, making the resource more flexible and maintainable. The new submission protocol brings a number of additional benefits including: providing instant validation of data and avoiding the requirement to synchronise releases between resources. It also makes it possible to implement the submission of these structural annotations as an automated part of existing internal workflows. In turn, these improvements facilitate Genome3D being opened up to new prediction algorithms and groups. For the latest release of Genome3D (v2.1), the underlying dataset of sequences used as prediction targets has been updated using the latest reference proteomes available in UniProtKB. A number of new reference proteomes have also been added of particular interest to the wider scientific community: cow, pig, wheat and mycobacterium tuberculosis. These additions, along with improvements to the underlying predictions from contributing resources, has ensured that the number of annotations in Genome3D has nearly doubled since the last NAR update article. The new API has also been used to facilitate the dissemination of Genome3D data into InterPro, thereby widening the visibility of both the annotation data and annotation algorithms.
    Matched MeSH terms: Proteins/chemistry*
  18. Yousaf MZ, Abbas M, Nazir T, Abdullah FA, Birhanu A, Emadifar H
    Sci Rep, 2024 Mar 17;14(1):6410.
    PMID: 38494490 DOI: 10.1038/s41598-024-55786-z
    The present research investigates the double-chain deoxyribonucleic acid model, which is important for the transfer and retention of genetic material in biological domains. This model is composed of two lengthy uniformly elastic filaments, that stand in for a pair of polynucleotide chains of the deoxyribonucleic acid molecule joined by hydrogen bonds among the bottom combination, demonstrating the hydrogen bonds formed within the chain's base pairs. The modified extended Fan sub equation method effectively used to explain the exact travelling wave solutions for the double-chain deoxyribonucleic acid model. Compared to the earlier, now in use methods, the previously described modified extended Fan sub equation method provide more innovative, comprehensive solutions and are relatively straightforward to implement. This method transforms a non-linear partial differential equation into an ODE by using a travelling wave transformation. Additionally, the study yields both single and mixed non-degenerate Jacobi elliptic function type solutions. The complexiton, kink wave, dark or anti-bell, V, anti-Z and singular wave shapes soliton solutions are a few of the creative solutions that have been constructed utilizing modified extended Fan sub equation method that can offer details on the transversal and longitudinal moves inside the DNA helix by freely chosen parameters. Solitons propagate at a consistent rate and retain their original shape. They are widely used in nonlinear models and can be found everywhere in nature. To help in understanding the physical significance of the double-chain deoxyribonucleic acid model, several solutions are shown with graphics in the form of contour, 2D and 3D graphs using computer software Mathematica 13.2. All of the requisite constraint factors that are required for the completed solutions to exist appear to be met. Therefore, our method of strengthening symbolic computations offers a powerful and effective mathematical tool for resolving various moderate nonlinear wave problems. The findings demonstrate the system's potentially very rich precise wave forms with biological significance. The fundamentals of double-chain deoxyribonucleic acid model diffusion and processing are demonstrated by this work, which marks a substantial development in our knowledge of double-chain deoxyribonucleic acid model movements.
    Matched MeSH terms: DNA/chemistry
  19. Veronica N, Lee ESM, Heng PWS, Liew CV
    Int J Pharm, 2024 Aug 15;661:124467.
    PMID: 39004293 DOI: 10.1016/j.ijpharm.2024.124467
    Tablet disintegration is crucial for drug release and subsequent systemic absorption. Although factors affecting the disintegrant's functionality have been extensively studied, the impact of wet granulation on the performance of disintegrants in a poorly water-soluble matrix has received much less attention. In this study, the disintegrants, crospovidone (XPVP), croscarmellose sodium (CCS) and sodium starch glycolate (SSG), were wet-granulated with dibasic calcium phosphate dihydrate as the poorly water-soluble matrix and polyvinylpyrrolidone as the binder. The effect of wet granulation was studied by evaluating tablet tensile strength and disintegratability. Comparison between tablets with granulated or ungranulated disintegrants as well those without disintegrants were also made. Different formulations showed different degrees of sensitivity to changes in tablet tensile strength and disintegratability post-wet granulation. Tablet tensile strength decreased for tablets with granulated disintegrant XPVP or CCS, but to a smaller extent for SSG. While tablets with granulated XPVP or CCS had increased disintegration time, the increment was lesser than for SSG, suggesting that wet granulation impacted a swelling disintegrant more. The findings showed that tablets with wet-granulated disintegrant had altered the disintegrant's functionality. These findings could provide better insights into changes in the disintegrant's functionality after wet granulation.
    Matched MeSH terms: Chemistry, Pharmaceutical/methods
  20. Saw KC, Ahmad Mokhtar AM, Ismail NI
    Trop Biomed, 2024 Jun 01;41(2):166-175.
    PMID: 39154269 DOI: 10.47665/tb.41.2.006
    Nsp1 in SARS-CoV-2 is a key protein that increases the virus's pathogenicity and virulence by binding to the host ribosome and blocks the 40S ribosomal subunit channel, which effectively impedes the mRNA translation as well as crippling the host immune system. Previous studies revealed that the N-terminal in Nsp1 is part and parcel of Nsp1 efficiency, and mutations in its core residues have weakened the protein's. This knowledge persuades us to carry out the in silico screening on plant compounds of Piper sarmentosum Roxb. against the five target residues which are Glu36, Glu37, Arg99, Arg124 and Lys125. Potential compounds were tested for their druggability. As a result, we identified five out of 112 compounds including stigmasterol, N-feruloyltyramine, beta-Sitosterol, 13-(1,3-benzodioxol-5-yl)- N-(2methylpropyl) trideca-2,4,12-trienamide and N-(2-methylpropyl) octadeca-2-4dienamide in Piper sarmentosum Roxb. as potential inhibitors for Nsp1. These compounds formed at least a hydrophobic, hydrogen bonding or π-cation interactions with the protein. Furthermore, SwissADME analysis and the number of bindings to the target residues suggest that N-feruloyltyramine is the ideal inhibitor candidate against SARS-CoV-2 at its N-terminal of Nsp1. Lastly, the interaction with N-feruloyltyramine increased flexibility in the loop regions of N-terminal Nsp1, especially residues 54 to 70, with residue 59 showing the highest fluctuation, potentially affecting the protein's stability and function due to the correlation between RMSF and protein function.
    Matched MeSH terms: Antiviral Agents/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links