Materials and Methods: Three months old Sprague Dawley male rats were randomly divided into 5 groups: (I) control group; (II) alcohol (3g/kg) + normal saline; (III) alcohol (3g/kg) + olive oil; (IV) alcohol (3g/kg) + alpha-tocopherol (60mg/kg) and (V) alcohol (3g/kg) + palm vitamin E (60mg/kg). The treatment lasted for three months. Following sacrifice, the right tibia was subjected to bone biomechanical test while the lumbar (fourth and fifth lumbar) and left tibia bones were harvested for bone mineral measurement.
Results: Alcohol caused reduction in bone biomechanical parameters (maximum force, ultimate stress, yield stress and Young's modulus) and bone minerals (bone calcium and magnesium) compared to control group (P<0.05). Palm vitamin E was able to improve bone biomechanical parameters by increasing the maximum force, ultimate stress and Young's modulus (P<0.05) while alpha-tocopherol was not able to. Both alpha-tocopherol and palm vitamin E were able to significantly increase tibia calcium and magnesium content while only alpha-tocopherol caused significant increase in lumbar calcium content (P<0.05).
Conclusion: Both palm vitamin E and alpha-tocopherol improved bone mineral content which was reduced by alcohol. However, only palm vitamin E was able to improve bone strength in alcohol treated rats.
Materials and Methods: Twenty-four: Sprague Dawley rats were equally distributed into the following four groups: G1 (control), G2, G3, and G4 represented the groups treated with EBN at graded concentrations of 0, 30, 60, and 120 mg/kg body weight (BW) per day for 8 weeks, respectively. During the experimental period, the BW of each rat was recorded weekly. At the proestrus stage of estrous cycle, blood samples were collected from the hearts of anesthetized rats that were later sacrificed. The uteri were removed for histological and immunohistochemical analyses.
Results: The EBN-treated groups showed an increase in the weights and lengths of uteri as compared to the control. Results showed that relative to G1 and G2, G3 and G4 exhibited proliferation in their uterine luminal and glandular epithelia and uterine glands, and up-regulated expressions of EGF, REGF, VEGF, PCNA, and progesterone receptor, and estrogen receptor in their uteri. The EBN increased the antioxidant (AO) and total AO capacities and reduced the oxidative stress (OS) levels in non-pregnant rats.
Conclusion: Findings of this study revealed that EBN promotes proliferation of the uterine structures as evidenced by the upregulation of the expressions of steroid receptors, EGF, REGF, VEGF, and PCNA in the uterus and increased in the plasma concentrations of AO and reduced levels of OS.