Displaying publications 441 - 460 of 10373 in total

Abstract:
Sort:
  1. Sawangjit R, Puttarak P, Saokaew S, Chaiyakunapruk N
    Phytother Res, 2017 Apr;31(4):555-567.
    PMID: 28165166 DOI: 10.1002/ptr.5783
    Cissus quadrangularis L. (Cissus) is a medicinal plant commonly used for centuries for various conditions, but lacks critical appraisal of its clinical effects. This study aimed to determine the efficacy and safety of Cissus in all conditions. Publications from 12 electronic databases were searched from inception through November 2016. A total of nine studies with 1108 patients were included. Each outcome was pooled using a random effects model. Effects of Cissus on hemorrhoid symptoms were not different from any comparators but had significant effects on bone pain. Effects of Cissus combination products on body weight reduction, low-density lipoprotein, triglyceride, total cholesterol, and fasting blood sugar were superior to placebo, with weighted mean difference of -5.19 kg (-8.82, -1.55), -14.43 mg/dl (-20.06, -8.80), -37.50 mg/dl (-48.71, -26.29), -50.50 mg/dl (-70.97, -30.04), and -10.39 mg/dl (-14.60, -6.18), respectively. No serious adverse effects were reported. Quality of evidence based on Grades of Recommendations Assessment Development and Evaluation (GRADE) indicated low (bone fractures) to high quality (hemorrhoids, body weight reduction).In conclusion, Cissus had benefit for bone fractures, but not for hemorrhoids. For obesity/overweight, only combination products are pooled and show benefit. However, high-quality studies remain needed. Copyright © 2017 John Wiley & Sons, Ltd.
    Matched MeSH terms: Biological Products/chemistry*; Plant Extracts/chemistry*; Cissus/chemistry*
  2. Kian LK, Saba N, Jawaid M, Sultan MTH
    Int J Biol Macromol, 2019 Jan;121:1314-1328.
    PMID: 30208300 DOI: 10.1016/j.ijbiomac.2018.09.040
    The utilization of nanocellulose has increasingly gained attentions from various research fields, especially the field of polymer nanocomposites owing to the growing environmental hazardous of petroleum based fiber products. Meanwhile, the searching of alternative cellulose sources from different plants has become the interests for producing nanocellulose with varying characterizations that expectedly suit in specific field of applications. In this content the long and strong bast fibers from plant species was gradually getting its remarkable position in the field of nanocellulose extraction and nanocomposites fabrications. This review article intended to present an overview of the chemical structure of cellulose, different types of nanocellulose, bast fibers compositions, structure, polylactic acid (PLA) and the most probable processing techniques on the developments of nanocellulose from different bast fibers especially jute, kenaf, hemp, flax, ramie and roselle and its nanocomposites. This article however more focused on the fabrication of PLA based nanocomposites due to its high firmness, biodegradability and sustainability properties in developed products towards the environment. Along with this it also explored a couple of issues to improve the processing techniques of bast fibers nanocellulose and its reinforcement in the PLA biopolymer as final products.
    Matched MeSH terms: Cellulose/chemistry*; Polyesters/chemistry*; Nanocomposites/chemistry*
  3. Liang H, Qin X, Tan CP, Li D, Wang Y
    J Agric Food Chem, 2018 Nov 21;66(46):12361-12367.
    PMID: 30394748 DOI: 10.1021/acs.jafc.8b04804
    Docosahexaenoyl and eicosapentaenoyl ethanolamides (DHEA and EPEA) have physiological functions, including immunomodulation, brain development, and anti-inflammation, but their efficient production is still unresolved. In this study, choline-chloride-based natural deep eutectic solvents are used as media to improve the production of DHEA and EPEA. The water content showed a key effect on the reactant conversion. Adding water to choline chloride-glucose (CG, molar ratio of 5:2) led to a significant increase (13.03% for EPEA and 27.95% for DHEA) in the yields after 1 h. The high yields of EPEA (96.84%) and DHEA (90.06%) were obtained under the optimized conditions [fish oil ethyl esters/ethanolamine molar ratio of 1:2, temperature of 60 °C, 1 h, enzyme loading of 2195 units, and CG containing 8.50% water of 43.30% (w/w, relative to total reactants)]. The products could be easily separated using centrifugation. In summary, the research has the potential to produce fatty acyl ethanolamides.
    Matched MeSH terms: Choline/chemistry*; Docosahexaenoic Acids/chemistry; Fatty Acids, Unsaturated/chemistry; Lipase/chemistry*; Eicosapentaenoic Acid/chemistry; Ethanolamine/chemistry*; Green Chemistry Technology/methods*
  4. Zolkiflee NF, Affandi MMRMM, Majeed ABA
    Eur J Pharm Sci, 2020 Jan 01;141:105111.
    PMID: 31629916 DOI: 10.1016/j.ejps.2019.105111
    Lovastatin (LVS) is an effective therapeutic and prophylactic agent in several cardiovascular disorders. However, it has low bioavailability. This study investigated solute-solvent and solute-cosolute interactions and assessed thermodynamic parameters that contributed to LVS solubility enhancement in the presence of arginine (ARG) as a hydrotropic agent. The electrolytic conductance of LVS-ARG binary system was measured at temperatures from 298.15 K to 313.15 K. Conductometric parameters such as limiting molar conductance was evaluated. Additionally, thermodynamic parameters (ΔG0, ΔH0, ΔS0 and ES) involved in the association process of the solute in the aqueous solution of ARG solution were determined systematically. Solubility markedly improved 43-fold in the LVS-ARG complex compared to LVS alone. The analysed data from values of molar conductance and activation energy suggested favourable solubilisation, with a stronger solute-solvent interaction between LVS-ARG in water at higher temperatures. ARG and LVS complexation caused by strong molecular interactions was confirmed by spectral results. Hence, the addition of ARG as a co-solute was proven to enhance LVS solubility in water. The obtained data will ultimately enable the development of desired highly soluble, more efficient and safer LVS preparations.
    Matched MeSH terms: Arginine/chemistry*; Lovastatin/chemistry*; Solvents/chemistry*
  5. Wsoo MA, Shahir S, Mohd Bohari SP, Nayan NHM, Razak SIA
    Carbohydr Res, 2020 May;491:107978.
    PMID: 32163784 DOI: 10.1016/j.carres.2020.107978
    Cellulose acetate (CA) is a remarkable biomaterial most extensively used in biomedical applications due to their properties. This review highlighted the synthesis and chemical structure of CA polymer as well as focused on the mechanical, chemical, thermal, biocompatible, and biodegradable properties of electrospun CA nanofibers. These properties are essential in the evaluation of the CA nanofibers and provide information as a reference for the further utilization and improvement of CA nanofibers. Moreover, we have summarized the use of electrospun CA nanofibers in the drug delivery system as a carrier for drugs and classify them according to the drug class, including anti-inflammatory, anticancer, antioxidant, antimicrobial agents, vitamins and amino acids. Our review has been concluded that CA nanofibers cannot wholly be biodegraded within the human body due to the absence of cellulase enzyme but degraded by microorganisms. Hence, the biodegradation of CA nanofibers in vivo has addressed as a critical challenge.
    Matched MeSH terms: Amino Acids/chemistry; Anti-Infective Agents/chemistry; Anti-Inflammatory Agents/chemistry; Antineoplastic Agents/chemistry; Antioxidants/chemistry; Cellulose/chemistry; Vitamins/chemistry; Nanofibers/chemistry
  6. Lee SY, Fazlina N, Tye GJ
    Anal Biochem, 2019 09 15;581:113352.
    PMID: 31260647 DOI: 10.1016/j.ab.2019.113352
    DNA-templated silver nanocluster (AgNC), a new promising fluorescence probe has gained importance in biosensing and bioimaging in recent years. We employed a label-free AgNC to detect an intracellular transcription factor known as forkhead box p3 (FOXP3), which is the master regulator of regulatory T cells (Tregs) suppressive function. We developed an optimized method for the detection of messenger ribonucleic acid (mRNA) of FOXP3 by hybridizing AgNC and G-rich to the target FOXP3 mRNA of a MCF-7 cells. MCF-7 cells are chosen as a model as it readily expresses FOXP3. The hybridized samples were examined with UV illuminator and further verified with fluorescence spectroscopy, fluorescence microscope and flow cytometry. The successful hybridization of a three-way junction with AgNC, G-rich and mRNA FOXP3 target generated an improved fluorescence intensity with a spectral shift. We have successfully delivered the green fluorescing AgNC and G-rich into MCF-7 cells, producing a shift to red fluorescing cells corroborated by flow cytometry results. In summary, our approach enables the detection of intracellular FOXP3 nucleic acid and holds considerable potential in establishing a non-lethal intracellular detection system which would be crucial for the isolation of regulatory T-cells (Tregs) when combined with other cell surface markers.
    Matched MeSH terms: DNA/chemistry*; Silver/chemistry*; Metal Nanoparticles/chemistry*
  7. Castro-Aguirre E, Iñiguez-Franco F, Samsudin H, Fang X, Auras R
    Adv Drug Deliv Rev, 2016 12 15;107:333-366.
    PMID: 27046295 DOI: 10.1016/j.addr.2016.03.010
    Global awareness of material sustainability has increased the demand for bio-based polymers like poly(lactic acid) (PLA), which are seen as a desirable alternative to fossil-based polymers because they have less environmental impact. PLA is an aliphatic polyester, primarily produced by industrial polycondensation of lactic acid and/or ring-opening polymerization of lactide. Melt processing is the main technique used for mass production of PLA products for the medical, textile, plasticulture, and packaging industries. To fulfill additional desirable product properties and extend product use, PLA has been blended with other resins or compounded with different fillers such as fibers, and micro- and nanoparticles. This paper presents a review of the current status of PLA mass production, processing techniques and current applications, and also covers the methods to tailor PLA properties, the main PLA degradation reactions, PLA products' end-of-life scenarios and the environmental footprint of this unique polymer.
    Matched MeSH terms: Polyesters/chemistry*; Lactic Acid/chemistry; Nanoparticles/chemistry
  8. Amin MC, Fell JT
    Drug Dev Ind Pharm, 2004;30(9):937-45.
    PMID: 15554218
    Percolation theory has been used with great interest in understanding the design and characterization of dosage forms. In this study, work has been carried out to investigate the behavior of binary mixture tablets containing excipients of similar and different deformation properties. The binary mixture tablets were prepared by direct compression using lactose, polyvinyl chloride (PVC), Eudragit RS 100, and microcrystalline cellulose (MCC). The application of percolation theory on the relationships between compactibility, Pmax, or compression susceptibility (compressibility), gamma, and mixture compositions reveals the presence of percolation thresholds even for mixtures of similar deformation properties. The results showed that all mixture compositions exhibited at least one discreet change in the slope, which was referred to as the percolation threshold. The PVC/Eudragit RS100 mixture compositions showed significant percolation threshold at 80% (w/w) PVC loading. Two percolation thresholds were observed from a series of binary mixtures containing similar plastic deformation materials (PVC/MCC). The percolation thresholds were determined at 20% (w/w) and 80% (w/w) PVC loading. These are areas where one of the components percolates throughout the system and the properties of the tablets are expected to experience a sudden change. Experimental results, however, showed that total disruption of the tablet physical properties at the specified percolation thresholds can be observed for PVC/lactose mixtures at 20-30% (w/w) loading while only minor changes in the tablets' strength for PVC/MCC or PVC/Eudragit RS 100 mixtures were observed.
    Matched MeSH terms: Acrylic Resins/chemistry; Cellulose/chemistry; Chemistry, Pharmaceutical; Chemistry, Physical; Excipients/chemistry*; Lactose/chemistry; Plastics/chemistry*; Polyvinyl Chloride/chemistry
  9. Sucinda EF, Abdul Majid MS, Ridzuan MJM, Cheng EM, Alshahrani HA, Mamat N
    Int J Biol Macromol, 2021 Sep 30;187:43-53.
    PMID: 34271052 DOI: 10.1016/j.ijbiomac.2021.07.069
    A packaging material that is environment-friendly with excellent mechanical and physicochemical properties, biodegradable and ultraviolet (UV) protection and thermal stability was prepared to reduce plastic waste. Six different concentrations of Pennisetum purpureum/Napier cellulose nanowhiskers (NWCs) (i.e. 0, 0.5, 1.0, 1.5, 2.0, and 3.0 wt%) were used to reinforce polylactic acid (PLA) by a solvent casting method. The resulting bionanocomposite film samples were characterised in terms of their morphology, chemical structure, crystallinity, thermal degradation and stability, light transmittance, water absorption, biodegradability, and physical and mechanical properties. Field-emission scanning electron microscopy showed the excellent dispersion of NWC in the PLA matrix occurred with NWC concentrations of 0.5-1.5 wt%. All the bionanocomposite film samples exhibited good thermal stability at approximately 343-359 °C. The highest water absorption was 1.94%. The lowest transparency at λ800 was 16.16% for the PLA/3.0% NWC bionanocomposite film, which also has the lowest UVA and UVB transmittance of 7.49% and 4.02%, respectively, making it suitable for packaging materials. The PLA/1.0% NWC film exhibited the highest crystallinity of 50.09% and high tensile strength and tensile modulus of 21.22 MPa and 11.35 MPa, respectively.
    Matched MeSH terms: Cellulose/chemistry*; Polyesters/chemistry*; Pennisetum/chemistry*
  10. Subramaniam S, Foo KY, Md Yusof EN, Jawad AH, Wilson LD, Sabar S
    Int J Biol Macromol, 2021 Dec 15;193(Pt B):1716-1726.
    PMID: 34742842 DOI: 10.1016/j.ijbiomac.2021.11.009
    Phosphorylated chitosan (P-CS) was successfully synthesized using a facile experimental setup of hydrothermal method that was applied to the adsorption of anionic Acid Red 88 (AR88) from aqueous media. The adsorption process obeyed the pseudo-second-order (PSO) kinetic model. In contrast, the adsorption isotherm conformed to the Langmuir model, with the maximum adsorption capacity (qm = 230 mg g-1) at 303 K. Both external and intraparticle diffusion strongly influenced the rate of adsorption. The insights from this study reveal that P-CS could be easily prepared and regenerated for reusability applications. The adsorption mechanism and intermolecular interaction between P-CS and AR 88 were investigated using Fourier transform infrared (FTIR) spectroscopy and calculations via Density Functional Theory (DFT). The key modes of adsorption for the P-CS/AR 88 system are driven by electrostatic attractions, H-bonding, and n-π interactions. The findings herein reveal that P-CS is a promising adsorbent for the removal of anionic dyes such as AR88 or similar pollutants from water.
    Matched MeSH terms: Azo Compounds/chemistry*; Coloring Agents/chemistry*; Chitosan/chemistry*
  11. Ng YJ, Tham PE, Khoo KS, Cheng CK, Chew KW, Show PL
    Bioprocess Biosyst Eng, 2021 Sep;44(9):1807-1818.
    PMID: 34009462 DOI: 10.1007/s00449-021-02577-9
    Virgin coconut oil is a useful substance in our daily life. It contains a high percentage of lauric acid which has many health benefits. The current industry has developed several methods to extract the oil out from the coconut fruit. This review paper aims to highlight several common extraction processes used in modern industries that includes cold extraction, hot extraction, low-pressure extraction, chilling, freezing and thawing method, fermentation, centrifugation, enzymatic extraction and supercritical fluid carbon dioxide. Different extraction methods will produce coconut oil with different yields and purities of lauric acid, thus having different uses and applications. Challenges that are faced by the industries in extracting the coconut oil using different methods of extraction are important to be explored so that advancement in the oil extraction technology can be done for efficient downstream processing. This study is vital as it provides insights that could enhance the production of coconut oil.
    Matched MeSH terms: Cocos/chemistry*; Fruit/chemistry*; Lauric Acids/chemistry*
  12. Rahmani M, Toia RF, Croft KD
    Planta Med, 1995 Oct;61(5):487-8.
    PMID: 7480216
    Matched MeSH terms: Plants, Medicinal/chemistry*; Trees/chemistry*; Lignans/chemistry
  13. Zainuri DA, Abdullah M, Zaini MF, Bakhtiar H, Arshad S, Abdul Razak I
    PLoS One, 2021;16(9):e0257808.
    PMID: 34582495 DOI: 10.1371/journal.pone.0257808
    The Ultraviolet-visible (UV-Vis) spectra indicate that anthracenyl chalcones (ACs) have high maximum wavelengths and good transparency windows for optical applications and are suitable for optoelectronic applications owing to their HOMO-LUMO energy gaps (2.93 and 2.76 eV). Different donor substituents on the AC affect their dipole moments and nonlinear optical (NLO) responses. The positive, negative, and neutral electrostatic potential regions of the molecules were identified using molecular electrostatic potential (MEP). The stability of the molecule on account of hyperconjugative interactions and accompanying charge delocalization was analyzed using natural bond orbital (NBO) analysis. Open and closed aperture Z-scans were performed using a continuous-wave frequency-doubled diode-pumped solid-state (DPSS) laser to measure the nonlinear absorption and nonlinear refractive index coefficients, respectively. The valley-to-peak profile of AC indicated a negative nonlinear refractive index coefficient. The obtained single crystals possess reverse saturation absorption due to excited-state absorption. The structural and nonlinear optical properties of the molecules have been discussed, along with the role of anthracene substitution for enhancing the nonlinear optical properties. The calculated third-order susceptibility value was 1.10 x10-4 esu at an intensity of 4.1 kW/cm2, higher than the reported values for related chalcone derivatives. The NLO response for both ACs offers excellent potential in optical switching and limiting applications.
    Matched MeSH terms: Anthracenes/chemistry*; Chalcones/chemistry*; Fused-Ring Compounds/chemistry*
  14. Sharifzadeh G, Hosseinkhani H
    Adv Healthc Mater, 2017 Dec;6(24).
    PMID: 29057617 DOI: 10.1002/adhm.201700801
    Recent advances and applications of biomolecule-responsive hydrogels, namely, glucose-responsive hydrogels, protein-responsive hydrogels, and nucleic-acid-responsive hydrogels are highlighted. However, achieving the ultimate purpose of using biomolecule-responsive hydrogels in preclinical and clinical areas is still at the very early stage and calls for more novel designing concepts and advance ideas. On the way toward the real/clinical application of biomolecule-responsive hydrogels, plenty of factors should be extensively studied and examined under both in vitro and in vivo conditions. For example, biocompatibility, biointegration, and toxicity of biomolecule-responsive hydrogels should be carefully evaluated. From the living body's point of view, biocompatibility is seriously depended on the interactions at the tissue/polymer interface. These interactions are influenced by physical nature, chemical structure, surface properties, and degradation of the materials. In addition, the developments of advanced hydrogels with tunable biological and mechanical properties which cause no/low side effects are of great importance.
    Matched MeSH terms: Biocompatible Materials/chemistry*; Boronic Acids/chemistry; Glucose/chemistry; Polyethylene Glycols/chemistry; Polyethyleneimine/chemistry; Polymers/chemistry; Proteins/chemistry; Hydrogels/chemistry*
  15. Al-Douri Y, Badi N, Voon CH
    Luminescence, 2018 Mar;33(2):260-266.
    PMID: 29024360 DOI: 10.1002/bio.3408
    Carbon-based quantum dots (C-QDs) were synthesized through microwave-assisted carbonization of an aqueous starch suspension mediated by sulphuric and phosphoric acids. The as-prepared C-QDs showed blue, green and yellow luminescence without the addition of any surface-passivating agent. The C-QDs were further analyzed by UV-vis spectroscopy to measure the optical response of the organic compound. The energy gaps revealed narrow sizing of C-QDs in the semiconductor range. The optical refractive index and dielectric constant were investigated. The C-QDs size distribution was characterized. The results suggested an easy route to the large scale production of C-QDs materials.
    Matched MeSH terms: Carbon/chemistry*; Starch/chemistry*; Quantum Dots/chemistry*
  16. Li KS, Ali A, Muhammad II
    Acta Sci Pol Technol Aliment, 2017 Jul-Sep;16(3):283-292.
    PMID: 29055976 DOI: 10.17306/J.AFS.0497
    BACKGROUND: Perah seed is one of the most underutilized oilseeds, containing high nutritional values and high percentage of α-linoleneic acid, which may have a high potential in food and pharmaceutical applica- tions. The main objective of this study was to evaluate the influence of microwave (MW) cooking on the proximate composition and antioxidant activity of perah seeds.

    METHODS: In this study, the proximate composition and amygdalin concentration of MW ir- radiated perah seeds were determined. The total phenolic content (TPC), Maillard reaction products (MRPs) and antioxidant activity of methanol (PME), 70% methanol in water (PMW), ethanol (PEE), 70% ethanol  in water (PEW) extracts and methanol extract of oil (PMO) were evaluated during MW cooking. The anti- oxidant activity was evaluated using multiple assays, namely DPPH radical scavenging activity, β-Carotene bleaching assay, and reducing power.

    RESULTS: Microwave cooking did not significantly increase crude lipid and carbohydrate content, and the amounts of other nutrients such as ash, crude protein and fibre remained almost unchanged. As evaluated  by HPLC, the amygdalin concentration in the seeds was reduced by MW cooking. The TPC, MRP and anti- oxidant activity of the solvent extracts of perah seeds increased significantly with increasing roasting time. Of all the extracts, PMW at all MW cooking times displayed the highest antioxidant effectiveness. However, thermal treatment significantly reduced the antioxidant properties of PMO. The values for TPC, MRP and antioxidant effectiveness of the samples were ranked in the following order: PMW > PEW > PME > PEE > PMO, in both control and microwaved samples.

    CONCLUSIONS: In determining the overall quality of the products, MW cooking time was found to be a critical factor. Solubilization of phenolic compounds and formation of MRPs during MW cooking could have caused the increase in antioxidant activity of the perah seeds.
    Matched MeSH terms: Amygdalin/chemistry; Antioxidants/chemistry*; Biphenyl Compounds/chemistry; Picrates/chemistry; Plant Extracts/chemistry; Plant Oils/chemistry; Seeds/chemistry*; Euphorbiaceae/chemistry*
  17. Kalidas NR, Saminathan M, Ismail IS, Abas F, Maity P, Islam SS, et al.
    Food Chem, 2017 Nov 01;234:348-355.
    PMID: 28551246 DOI: 10.1016/j.foodchem.2017.04.159
    In this study, mannanoligosaccharides (MOS) were isolated from palm kernel cake by aqueous extraction using high temperature and pressure. Structural characterization of MOS was carried out using acid hydrolysis, methylation analysis, ESI-MS/MS and 1D/2D NMR. The prebiotic activity of MOS was evaluated in vitro using two probiotic Lactobacillus strains. Sugar analysis indicated the presence of mannose in each of the oligomers. Methylation and 1D/2D NMR analysis indicated that the MOS have a linear structure consisting of (1→4)-β-d-mannopyranosyl residues. ESI-MS/MS results showed that the isolated mannan oligomers, MOS-III, MOS-IV, MOS-V and MOS-VI consist of tetra-, penta-, hexa-, and hepta-saccharides with molecular weights of 689, 851, 1013 and 1151Da, respectively. Based on the in vitro growth study, MOS-III and MOS-IV was found to be effective in selectively promoting the growth of Lactobacillus reuteri C1 strain as evidenced by the optical density of the culture broth.
    Matched MeSH terms: Mannans/chemistry*; Mannose/chemistry*; Arecaceae/chemistry*
  18. Pang SC, Voon LK, Chin SF
    Appl Biochem Biotechnol, 2018 Apr;184(4):1142-1154.
    PMID: 28965305 DOI: 10.1007/s12010-017-2616-z
    The conversion of starchy sago (Metroxylon sagu) pith waste (SPW), a lignocellulosic biomass waste, to fermentable sugars under mild conditions had been successfully demonstrated. The optimum depolymerization of SPW was achieved at 2 wt% sample loading which was catalyzed by 100 mM of oxalic acid in the presence of 25 wt% NaCl solution at 110 °C for 3 h. Up to 97% SPW sample was being converted into fermentable sugars with limited formation of by-products after two sequential depolymerization cycles. Both reaction temperature and concentration of oxalic acid were crucial parameters for the depolymerization of SPW which exhibited a high selectivity for the production of glucose over other reducing sugars.
    Matched MeSH terms: Lignin/chemistry*; Oxalic Acid/chemistry*; Arecaceae/chemistry*
  19. Nurulhuda K, Gaydon DS, Jing Q, Zakaria MP, Struik PC, Keesman KJ
    J Sci Food Agric, 2018 Feb;98(3):865-871.
    PMID: 28940491 DOI: 10.1002/jsfa.8683
    Extensive modelling studies on nitrogen (N) dynamics in flooded soil systems have been published. Consequently, many N dynamics models are available for users to select from. With the current research trend, inclined towards multidisciplinary research, and with substantial progress in understanding of N dynamics in flooded soil systems, the objective of this paper is to provide an overview of the modelling concepts and performance of 14 models developed to simulate N dynamics in flooded soil systems. This overview provides breadth of knowledge on the models, and, therefore, is valuable as a first step in the selection of an appropriate model for a specific application. © 2017 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
    Matched MeSH terms: Nitrogen/chemistry*; Soil/chemistry*; Water Pollutants, Chemical/chemistry
  20. Thu HE, Hussain Z, Mohamed IN, Shuid AN
    Curr Drug Targets, 2018;19(14):1657-1671.
    PMID: 29468964 DOI: 10.2174/1389450119666180219123815
    BACKGROUND: Eurycoma longifolia (E. longifolia) has gained widespread recognition due to its versatile pharmacological activities including aphrodisiac, anticancer, antimicrobial, antioxidant, anti-inflammatory, anxiolytic, anti-diabetic, ergogenic, insecticidal, anti-rheumatism, bone protection, and anti-ulcer effects.

    OBJECTIVE: This review was aimed to critically overview the literature and summarizes the antibacterial, antiprotozoal, and antifungal trends of E. longifolia and its medicinally active components.

    RESULTS: Besides its well-documented safety, efficacy, and tolerability, a plethora of in vitro, in vivo, and human clinical studies has evidenced the antimicrobial efficacy of E. longifolia and its bioactive constituents. Phytochemical screening of various types of extracts (methanolic, ethyl acetate, and nbutanolic) from different parts (roots, stem, and leaves) of E. longifolia displayed a dose-dependent antibacterial, antiprotozoal, and antifungal responses. Comparative analysis revealed that the root extract of E. longifolia exhibited the highest antimicrobial efficacy compared to other parts of the plant. Bioactivity-guided fractionation identified that among all of the medicinal compounds isolated/ extracted from different parts of E. longifolia, eurycomanone displayed the strongest antibacterial, antiprotozoal and antifungal activities.

    CONCLUSION: Based on the critical analysis of the literature, we identified that E. longifolia exhibits promising antibacterial, antiprotozoal, and antifungal efficacies against various pathogenic microbes and thus can be considered as a potential complementary and alternative antimicrobial therapy.

    Matched MeSH terms: Anti-Bacterial Agents/chemistry; Antifungal Agents/chemistry; Antiprotozoal Agents/chemistry; Plant Leaves/chemistry; Plant Roots/chemistry; Plant Stems/chemistry; Eurycoma/chemistry*; Phytochemicals/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links