Displaying publications 461 - 480 of 1125 in total

Abstract:
Sort:
  1. Mohd. Hilmi Mahmood, Shahrol Najmin Baharom, Rida Tajau, Mek Zah Salleh, Khairul Zaman Mohd. Dahlan, Rosley Che Ismail
    MyJurnal
    Various palm oil (RBD Palm Olein) based urethane acrylate prepolymers (UPs) having different structures and molecular weights were synthesised from palm oil based polyols, diisocyanate compounds and hydroxyl terminated acrylate monomers by following established synthesis procedures described elsewhere. The products (UPs) were compared with each other in terms of their molecular weights (MW), viscosities and UV curing performances of pressure sensitive adhesives (PSA) UP based formulations. The molecular structure of diisocyanate compounds and hydroxyl acrylate monomers tend to determine the molecular weights and hence viscosities of the final products of urethane acrylate prepolymers (UP), whereas, the MW of the UP has no direct effects on the coatings and adhesive properties of UV curable UP based PSA.
    Matched MeSH terms: Plant Oils
  2. Ahmad Saat, Zaini Hamzah, Zaharidah Abu Bakar, Zuraidah A. Munir, Siti Mariam Sumari, Misbah Hassan
    MyJurnal
    A study was carried out to determine short term diurnal radon concentration at five locations in Malaysia. Two locations (KG & AP) are former tin mining areas that has been converted to housing area and training centre respectively, one a relatively new city (SA), that was formerly a rubber and oil palm plantation area, one older cities (KB) and one housing complex by the sea (LP). The study was carried out in 2005, 2006 and 2007 using a diffused-junction photodiode sensor continuous radon monitor. The monitor is recognized by the USEPA. In each location, measurements were carried out on at least ten sites. Former tin mining areas of KG and AP shows up to seven times higher indoor average than the average in the other three locations. However the indoor average in all locations is still below the action level of 4 pCiL-1. For outdoor, the former tin mining areas average concentration was higher than the global average of 0.4 pCiL-1. For the twenty four hours temporal variation the trend indicated that former tin mining areas concentration are always higher, and at time up to six fold higher. The hourly variation of all locations follows an identical trend of high concentration during early to late morning and drop in the afternoon till evening. The outdoor twenty four hour temporal average of former tin mining areas is consistently higher than the outdoor global average of 0.4 pCiL-1. The strong correlation between indoor and outdoor concentration at AP, indicates that indoor radon might originates from outdoor environment. The study was also extended to estimate the effective dose (mSvyr-1) of Rn-222 to the public.
    Matched MeSH terms: Plant Oils
  3. Tan YL, Abdullah AZ, Hameed BH
    Bioresour Technol, 2018 Sep;264:198-205.
    PMID: 29803811 DOI: 10.1016/j.biortech.2018.05.058
    Silica-alumina catalyst was prepared and used in the catalytic fast pyrolysis of durian rind in a drop-type two-stage reactor. The effects of catalytic temperature (400 °C-600 °C) and catalyst-to-durian rind ratio (1:30-3:30) were evaluated. Bio-oil yield was increased with increased catalytic temperature due to considerable dehydration process, but it was reduced with high catalyst loading due to the overcracking of organics into light gases. Silica-alumina catalyst possessed good selectivity and the products changed according to the temperature. The major components in bio-oil were hydrocarbons, furan derivatives, and aromatic compounds at 400 °C, 500 °C, and 600 °C, respectively. The hydrogen and carbon contents of bio-oil were reduced with high catalyst loading due to the overcracking of organics, and the deoxygenation process became unfavorable. The silica-alumina catalyst worked well in catalytic fast pyrolysis of durian rind, and the condition may be adjusted based on the desired products.
    Matched MeSH terms: Plant Oils
  4. Yan D, Wong YF, Whittock SP, Koutoulis A, Shellie RA, Marriott PJ
    Anal Chem, 2018 04 17;90(8):5264-5271.
    PMID: 29575899 DOI: 10.1021/acs.analchem.8b00142
    A novel sequential three-dimensional gas chromatography-high-resolution time-of-flight mass spectrometry (3D GC-accTOFMS) approach for profiling secondary metabolites in complex plant extracts is described. This integrated system incorporates a nonpolar first-dimension (1Dnp) separation step, prior to a microfluidic heart-cut (H/C) of a targeted region(s) to a cryogenic trapping device, directly followed by the rapid reinjection of a trapped solute into a polar second-dimension (2DPEG) column for multidimensional separation (GCnp-GCPEG). For additional separation, the effluent from 2DPEG can then be modulated according to a comprehensive 2D GC process (GC×GC), using an ionic liquid phase as a third-dimension (3DIL) column, to produce a sequential GCnp-GCPEG×GCIL separation. Thus, the unresolved or poorly resolved components, or regions that require further separation, can be precisely selected and rapidly transferred for additional separation on 2D or 3D columns, based on the greater separation realized by these steps. The described integrated system can be used in a number of modes, but one useful approach is to target specific classes of compounds for improved resolution. This is demonstrated through the separation and detection of the oxygenated sesquiterpenes in hop ( Humulus lupulus L.) essential oil and agarwood ( Aquilaria malaccensis) oleoresin. Improved resolution and peak capacity were illustrated through the progressive comparison of the tentatively identified components for GCnp-GCPEG and GCnp-GCPEG×GCIL methods. Relative standard deviations of intraday retentions (1 tR, 2 tR,, and 3 tR) and peak areas of ≤0.01, 0.07, 0.71, and 7.5% were achieved. This analytical approach comprising three GC column selectivities, hyphenated with high-resolution TOFMS detection, should be a valuable adjunct for the improved characterization of complex plant samples, particularly in the area of plant metabolomics.
    Matched MeSH terms: Oils, Volatile
  5. Juahir H, Ismail A, Mohamed SB, Toriman ME, Kassim AM, Zain SM, et al.
    Mar Pollut Bull, 2017 Jul 15;120(1-2):322-332.
    PMID: 28535957 DOI: 10.1016/j.marpolbul.2017.04.032
    This study involves the use of quality engineering in oil spill classification based on oil spill fingerprinting from GC-FID and GC-MS employing the six-sigma approach. The oil spills are recovered from various water areas of Peninsular Malaysia and Sabah (East Malaysia). The study approach used six sigma methodologies that effectively serve as the problem solving in oil classification extracted from the complex mixtures of oil spilled dataset. The analysis of six sigma link with the quality engineering improved the organizational performance to achieve its objectivity of the environmental forensics. The study reveals that oil spills are discriminated into four groups' viz. diesel, hydrocarbon fuel oil (HFO), mixture oil lubricant and fuel oil (MOLFO) and waste oil (WO) according to the similarity of the intrinsic chemical properties. Through the validation, it confirmed that four discriminant component, diesel, hydrocarbon fuel oil (HFO), mixture oil lubricant and fuel oil (MOLFO) and waste oil (WO) dominate the oil types with a total variance of 99.51% with ANOVA giving Fstat>Fcritical at 95% confidence level and a Chi Square goodness test of 74.87. Results obtained from this study reveals that by employing six-sigma approach in a data-driven problem such as in the case of oil spill classification, good decision making can be expedited.
    Matched MeSH terms: Fuel Oils
  6. Ong CS, Al-Anzi B, Lau WJ, Goh PS, Lai GS, Ismail AF, et al.
    Sci Rep, 2017 07 31;7(1):6904.
    PMID: 28761159 DOI: 10.1038/s41598-017-07369-4
    Despite its attractive features for energy saving separation, the performance of forward osmosis (FO) has been restricted by internal concentration polarization and fast fouling propensity that occur in the membrane sublayer. These problems have significantly affected the membrane performance when treating highly contaminated oily wastewater. In this study, a novel double-skinned FO membrane with excellent anti-fouling properties has been developed for emulsified oil-water treatment. The double-skinned FO membrane comprises a fully porous sublayer sandwiched between a highly dense polyamide (PA) layer for salt rejection and a fairly loose dense bottom zwitterionic layer for emulsified oil particle removal. The top dense PA layer was synthesized via interfacial polymerization meanwhile the bottom layer was made up of a zwitterionic polyelectrolyte brush - (poly(3-(N-2-methacryloxyethyl-N,N-dimethyl) ammonatopropanesultone), abbreviated as PMAPS layer. The resultant double-skinned membrane exhibited a high water flux of 13.7 ± 0.3 L/m2.h and reverse salt transport of 1.6 ± 0.2 g/m2.h under FO mode using 2 M NaCl as the draw solution and emulsified oily solution as the feed. The double-skinned membrane outperforms the single-skinned membrane with much lower fouling propensity for emulsified oil-water separation.
    Matched MeSH terms: Oils
  7. Noor Atiqah Aizan Abd Kadir, Azrina Azlan
    MyJurnal
    Cardiovascular disease (CVD) is a major cause of disability and premature death throughout the world. This disease is commonly experienced by people with unhealthy lifestyle, stress and physical inactivity. Cholesterol has received the most attention as single risk factor of CVD. Reducing the intake of cholesterol, saturated fat, and trans faty acids may be beneficial, yet controversy is still lingering to what constituents more beneficial dietary fats. The purpose of this article is to give an overview on the impact of major dietary fatty acids on cardiovascular morbidity and mortality and to give an insightful information regarding fatty acids composition in selected fruits oils in search for novel oils as potential therapy against CVD.
    Matched MeSH terms: Plant Oils
  8. Koh, S. P., Long, K., Yusoff, M. S. A., Arifin, N.
    MyJurnal
    The potential use of medium- and long-chain triacylglycerols (MLCT) oil blends in food applications such as frying oil and salad dressings were investigated. The frying strength of palm-based MLCT oil with different antioxidants under deep frying conditions was assessed. Palm-based MLCT oil showed better thermal-resistant oxidative strength than refined, bleached and deodorized (RBD) palm olein throughout the five consecutive days of frying. Sensory evaluation and rancidity assessment on fried chips showed no significant differences (P > 0.05) between chips fried in RBD palm olein and palm-based MLCT oil. MLCT-based salad dressings treated with different antioxidants showed similar rheological behaviors as compared to soybean based salad dressings. The overall quality of the physical appearance and organoleptic acceptability based on quantitative descriptive analysis showed no significant differences (P > 0.05) in all salad dressings. These findings indicated that MLCT-based oil blends can be used as healthy functional oil for daily consumption.
    Matched MeSH terms: Plant Oils
  9. Ali A, Hei GK, Keat YW
    J Food Sci Technol, 2016 Mar;53(3):1435-44.
    PMID: 27570268 DOI: 10.1007/s13197-015-2124-5
    Effect of 2.0 % ginger oil (GO) and 1.5 % ginger extract (GE) in combination with 10.0 % gum arabic (GA) was evaluated for the postharvest control of anthracnose and maintaining quality of Eksotika II papaya fruit during storage at 12 ± 1 °C and 80-85 % RH. Antifungal compounds present in GO and GE were analyzed using gas chromatography and GO was found to contain α-pinene, 1, 8-cineole and borneol, while only borneol was present in GE due to different extraction methods applied. The highest antifungal activity was shown in 2.0 % GO combined with 10 % GA, which significantly (P 
    Matched MeSH terms: Oils, Volatile
  10. Hassan H, Lim JK, Hameed BH
    Bioresour Technol, 2016 Dec;221:645-655.
    PMID: 27671343 DOI: 10.1016/j.biortech.2016.09.026
    Co-pyrolysis of biomass with abundantly available materials could be an economical method for production of bio-fuels. However, elimination of oxygenated compounds poses a considerable challenge. Catalytic co-pyrolysis is another potential technique for upgrading bio-oils for application as liquid fuels in standard engines. This technique promotes the production of high-quality bio-oil through acid catalyzed reduction of oxygenated compounds and mutagenic polyaromatic hydrocarbons. This work aims to review and summarize research progress on co-pyrolysis and catalytic co-pyrolysis, as well as their benefits on enhancement of bio-oils derived from biomass. This review focuses on the potential of plastic wastes and coal materials as co-feed in co-pyrolysis to produce valuable liquid fuel. This paper also proposes future directions for using this technique to obtain high yields of bio-oils.
    Matched MeSH terms: Oils
  11. Salema AA, Afzal MT, Bennamoun L
    Bioresour Technol, 2017 Jun;233:353-362.
    PMID: 28285228 DOI: 10.1016/j.biortech.2017.02.113
    Pyrolysis of corn stalk biomass briquettes was carried out in a developed microwave (MW) reactor supplied with 2.45GHz frequency using 3kW power generator. MW power and biomass loading were the key parameters investigated in this study. Highest bio-oil, biochar, and gas yield of 19.6%, 41.1%, and 54.0% was achieved at different process condition. In terms of quality, biochar exhibited good heating value (32MJ/kg) than bio-oil (2.47MJ/kg). Bio-oil was also characterised chemically using FTIR and GC-MS method. This work may open new dimension towards development of large-scale MW pyrolysis technology.
    Matched MeSH terms: Plant Oils
  12. Misni N, Nor ZM, Ahmad R
    J Vector Borne Dis, 2017 Jan-Mar;54(1):44-53.
    PMID: 28352045
    BACKGROUND & OBJECTIVES: Many essential oils have been reported as natural sources of insect repellents; however, due to high volatility, they present low repellent effect. Formulation technique by using microencapsulation enables to control the volatility of essential oil and thereby extends the duration of repellency. In this study, the effectiveness of microencapsulated essential oils of Alpinia galanga, Citrus grandis and C. aurantifolia in the lotion formulations were evaluated against mosquito bites.

    METHODS: Essential oils and N,N-Diethyl-3-methylbenzamide (DEET) were encapsulated by using interfacial pre- cipitation techniques before incorporation into lotion base to form microencapsulated (ME) formulation. The pure essential oil and DEET were also prepared into lotion base to produce non-encapsulated (NE) formulation. All the prepared formulations were assessed for their repellent activity against Culex quinquefasciatus under laboratory condition. Field evaluations also were conducted in three different study sites in Peninsular Malaysia. In addi- tion, Citriodiol® (Mosiquard®) and citronella-based repellents (KAPS®, MozAway® and BioZ Natural®) were also included for comparison.

    RESULTS: In laboratory conditions, the ME formulations of the essential oils showed no significant difference with regard to the duration of repellent effect compared to the microencapsulated DEET used at the highest con- centration (20%). It exhibited >98% repellent effect for duration of 4 h (p = 0.06). In the field conditions, these formulations demonstrated comparable repellent effect (100% for a duration of 3 h) to Citriodiol® based repellent (Mosiguard®) (p = 0.07). In both test conditions, the ME formulations of the essential oils presented longer duration of 100% repellent effect (between 1 and 2 h) compared to NE formulations.

    INTERPRETATION & CONCLUSION: The findings of the study demonstrate that the application of the microencapsulation technique during the preparation of the formulations significantly increases the duration of the repellent effect of the essential oils, suggesting that the ME formulation of essential oils have potential to be commercialized as an alternative plant-based repellent in the market against the mosquitoes.
    Matched MeSH terms: Oils, Volatile/administration & dosage*; Oils, Volatile/isolation & purification; Oils, Volatile/pharmacology
  13. Bashir MJK, Wei CJ, Aun NC, Abu Amr SS
    J Environ Manage, 2017 May 15;193:458-469.
    PMID: 28262420 DOI: 10.1016/j.jenvman.2017.02.031
    Malaysia alone produces more than 49 million m3 palm oil mill effluent per year. Biological treated palm oil mill effluent via ponding system often fails to fulfill the regulatory discharge standards. This is due to remaining of non-biodegradable organics in the treated effluent. Thus, the aim of this study was to resolve such issue by using electro persulphate oxidation process, for the first time, as a post treatment of palm oil mill effluent. Central composite design in response surface methodology was used to analyze and optimize the interaction of operational variables (i.e., current density, contact time, initial pH and persulphate dosage) targeted on maximum treatment efficiency. The significance of quadratic model of each response was determined by analysis of variance, where all models indicated sufficient significance with p-value 
    Matched MeSH terms: Plant Oils
  14. Omar, Naja Nadiera, Iskandar Shahrim Mustafa, Nurhayati Abdullah, Rokiah Hashim
    MyJurnal
    Phenol Formaldehyde (PF) resin has been extensively used in the manufacturing industry as a binding agent, especially in the production of wood-based panels because of its ability to provide good moisture resistance, exterior strength and durability as well as excellent temperature stability. However, due to the use of limited petroleum-based phenol in its formulation, there is a strong interest in exploring renewable biomass material to partially substitute the petroleum-based phenol. In this study, the slow pyrolysis of biomass decomposition process was used to convert two types of biomass, namely, oil palm frond and Rhizophora hardwood, into bio-oil. The phenol-rich fraction of the bio-oil was separated and added into the formulation of PF resin to produce an environmentally-friendly type of PF resin, known as bio-oilphenol-formaldehyde (BPF) resin. This BPF resin was observed to have comparable viscosity, better alkalinity, improved non-volatile content and faster curing temperature than conventional PF resin. Moreover, the particleboard bonded with this BPF resin was observed to have just as excellent bonding strength as the one bonded using conventional PF resin. However, the BPF resin exhibited an increased level of free formaldehyde and less thermal stability than the conventional PF resin, probably due to the addition of the less reactive bio-oil.
    Matched MeSH terms: Plant Oils
  15. Tan YL, Hameed BH, Abdullah AZ
    Sci Total Environ, 2020 Feb 10;703:134902.
    PMID: 31753498 DOI: 10.1016/j.scitotenv.2019.134902
    Catalysts prepared from industrial wastes rich in Fe, Ca, Si, and Al were used in catalytic upgrading of pyrolysis vapour derived from durian shell and their effect on product yield and properties were compared. With same silica-to-alumina ratio, catalyst prepared from oil palm ash (AS-OPA) with lower Fe and Ca contents gave higher liquid yield (8.32 wt%) with alcohols (28.90%), hydrocarbons (46.00%), and nitrogen-containing compounds (21.46%) while catalyst prepared from electric arc furnace slag (AS-EAF) with higher Fe and Ca contents produced lower liquid yield (50.21 wt%) with high amount of esters (25.80%) and hydrocarbons (72.82%). The presence of AS-OPA and AS-EAF catalysts enhanced deoxygenation degree of bio-oil to 81.13% and 85.49%, respectively. The catalytic performance of AS-EAF at different temperatures (400-600 °C) and AS-EAF/durian shell ratios (1:30, 2:30, 3:30) was investigated. Increasing catalytic temperature enhanced production of bio-oil, reduced oxygenates and enhanced formation of esters. The liquid yield and yield of esters decreased with increasing catalyst loading. Hydrocarbons (mainly neopentane) were the major chemical compounds found in bio-oil produced over AS-EAF. Besides that, AS-EAF showed good deoxygenation performance with highest selectivity of hydrocarbons at 500 °C and AS-EAF/durian shell ratio of 2:30. Catalytic fast pyrolysis of durian shell using waste-derived catalysts is an effective waste management strategy as the bio-oil produced can be a potential alternative source of energy or chemical feedstocks.
    Matched MeSH terms: Plant Oils
  16. Siti F. Masre, Muzamir, M.K, Sabarina, I., Jehan, N., Yanti Rosli
    Jurnal Sains Kesihatan Malaysia, 2018;16(101):41-45.
    MyJurnal
    This study was conducted to evaluate the effect of argan oil with the exposure of low frequency electromagnetic field (EMF) on open wound healing in mice. Eighteen male mice (20-40 g) were divided into three groups: phosphate buffer saline (PBS) as negative control, solcoseryl gel as positive control, and argan oil with the exposure of low frequency EMF, 1.2 mT (treatment group). Full thickness wounds (4 mm diameter) were induced on the shaved dorsal of the mouse. All mice were sacrificed on day 12 after the final treatment. Macroscopic observation, wound contraction rate, histopathology analysis and total protein content were examined in this study. Results showed that wounds treated with argan oil and exposed to low frequency EMF has a significant increase in wound contraction rate (p < 0.05) and total protein content (p < 0.05). Moreover, histopathological analysis on the wound tissues displayed complete re-epithelization with thick and dense collagen fibers in the argan oil with low frequency EMF exposure treated group. In conclusion, topical treatment of argan oil with low frequency EMF exposure yield a better healing progress and showed the ability to accelerate wound healing
    Matched MeSH terms: Plant Oils
  17. Koguleshun S, Pua FL, Shamala G, Nabihah S
    Sains Malaysiana, 2015;44:1573-1577.
    Oil palm empty fruit bunch (EFB) contributes to a large quantity of lignocellulosic waste. It is an abundantly available
    waste biomass in Malaysia. This project was aimed to utilize the waste materials for a better benefit. EFB were used as
    raw material to prepare a new solid catalyst for biodiesel production. Solid acid catalyst derived from EFB was used to
    catalyze the esterification process in biodiesel production from waste cooking oil. Solid acid catalyst was prepared by
    direct impregnation with transition metal sulfides, Fe2
    (SO4
    )3
    . This new catalyst was used to catalyze the esterification of
    high free fatty acid (FFA) value oil, e.g. waste cooking oils (WCOs) as pre-treatment step prior to biodiesel production.
    The highest catalytic activity with 90.95% esterification rate was achieved. The catalyst can be easily separated for
    reuse compared to homogenous catalyst which are used in biodiesel production. EFB has the potential to be converted
    into useful feedstock and the derived catalyst can replace the traditional liquid acid catalyst in biodiesel production
    especially for high acid value content feedstock.
    Matched MeSH terms: Oils
  18. Goh KM, Maulidiani M, Rudiyanto R, Wong YH, Ang MY, Yew WM, et al.
    Talanta, 2019 Jun 01;198:215-223.
    PMID: 30876552 DOI: 10.1016/j.talanta.2019.01.111
    The technique of Fourier transform infrared spectroscopy is widely used to generate spectral data for use in the detection of food contaminants. Monochloropropanediol (MCPD) is a refining process-induced contaminant that is found in palm-based fats and oils. In this study, a chemometric approach was used to evaluate the relationship between the FTIR spectra and the total MCPD content of a palm-based cooking oil. A total of 156 samples were used to develop partial least squares regression (PLSR), artificial neural network (nnet), average artificial neural network (avNNET), random forest (RF) and cubist models. In addition, a consensus approach was used to generate fusion result consisted from all the model mentioned above. All the models were evaluated based on validation performed using training and testing datasets. In addition, the box plot of coefficient of determination (R2), root mean square error (RMSE), slopes and intercepts by 100 times randomization was also compared. Evaluation of performance based on the testing R2 and RMSE suggested that the cubist model predicted total MCPD content with the highest accuracy, followed by the RF, avNNET, nnet and PLSR models. The overfitting tendency was assessed based on differences in R2 and RMSE in the training and testing calibrations. The observations showed that the cubist and avNNET models possessed a certain degree of overfitting. However, the accuracy of these models in predicting the total MCPD content was high. Results of the consensus model showed that it slightly improved the accuracy of prediction as well as significantly reduced its uncertainty. The important variables derived from the cubist and RF models suggested that the wavenumbers corresponding to the MCPDs originated from the -CH=CH2 or CH=CH (990-900 cm-1) and C-Cl stretch (800-700 cm-1) regions of the FTIR spectrum data. In short, chemometrics in combination with FTIR analysis especially for the consensus model represent a potential and flexible technique for estimating the total MCPD content of refined vegetable oils.
    Matched MeSH terms: Plant Oils
  19. Abdul Kadir FA, Azizan KA, Othman R
    Data Brief, 2020 Feb;28:104987.
    PMID: 32226799 DOI: 10.1016/j.dib.2019.104987
    Agarwood is the highly valuable fragrant resin of the wounded Aquilaria spp. trees widely used in fragrances, medicines and incenses. Among the Aquilaria spp., A. malaccensis is the primary producer and is mainly found in Indonesia and Malaysia. In normal condition, agarwood is naturally formed in Aquilaria trees as a defense mechanism upon physical damage or microbial infection on the trees, which is a slow process that occurs over several years. The high demand in agarwood has spurred the development of various artificial inoculation methods where agarwood formation is synthetically induced in a shorter period of time. However, the synthetic induction method produces agarwood with aromas different from the naturally formed agarwood. To understand the changes in the agarwoods produced from different induction conditions, metabolite profiling of agarwood essential oil from A. malaccensis has been performed. The essential oils of healthy undamaged tree trunks and, naturally formed and synthetically induced agarwoods were obtained using hydrodistillation (HS) method and analysed using gas chromatography mass spectrometer (GC-MS). These data will provide valuable resources for chemical components of agarwood produced by the species in the genus Aquilaria.
    Matched MeSH terms: Oils, Volatile
  20. Mohammed Saifuddin, Amru N. Boyce
    Sains Malaysiana, 2017;46:1771-1778.
    As fossil energy resources are depleting quick and energy security is playing a vital role in the world economy. Quest for alternative energy sources have turned researches investigation in waste foods for next generation fuel. Biodiesel is usually considered to be environmentally friendly as it reduces greenhouse gas emission. Fish wastes rich in fatty acids and can be used as the raw material to produce biodiesel through transesterification reaction. The results showed that the seven peaks are fatty acid methyl esters, indicating all the triglycerides were successfully methylated to methyl esters. Fish based biodiesel provided a significant reduction in carbon monoxide (CO) and hydrocarbon (HC) emissions under engine loads of 15 (Nm) and required no engine modification. The viscosity of the produced biodiesel was within the range of international standards (ASTM). The biodiesel was found to contain a low base number and exhibited a lower specific fuel consumption compared to the conventional diesel. It can be concluded that biodiesel derived from waste fish oil can be considered as a potential source of commercial biodiesel.
    Matched MeSH terms: Fish Oils
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links