METHODS: In vitro anti-inflammatory activity and hydrogen peroxide (H2O2) scavenging activity were performed according to the established procedure. Inflammation was induced using CARR in BALB/c mice at the foot paw and peritoneal cavity. Hourly measurement of paw swelling was performed. The level of nitric oxide (NO), myeloperoxidase (MPO), cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2) and nuclear factor κB (NF-κB) was determined using enzyme-linked immunosorbent assay (ELISA). Peritoneal fluid was collected to investigate total count, differential count of leukocytes, and capillary permeability.
RESULTS: In vitro anti-inflammatory evaluations revealed the potential role of MAOI to inhibit heat-induced protein denaturation and human red cell membrane destabilization. H2O2 inhibition activity of MAOI also proved their powerful role as an H2O2 scavenger. Treatment with MAOI in CARR-induced mice significantly reduced paw edema, leukocyte extravasation, and total and differential leukocyte count. The result of ELISA showed MAOI effectively reduce the level of COX-2, PGE2 and NF-κB in inflamed tissue.
CONCLUSIONS: In short, this study demonstrates that inhibition of H2O2 by MAOI alleviates CARR-induced paw edema possibly by inhibiting the H2O2-mediated NF-κB-COX-2 pathway. The present investigation identifies MAOI might reprofile for the treatment of acute inflammation also, the MAO enzyme may use as a novel therapeutic target to design and develop new class of anti-inflammatory agents.
AIM OF THE STUDY: The purpose of this study was to determine the anti-inflammatory activity of the ethanol extract of E. maculata resin exudate, its methylene chloride and n-butanol fractions, as well as the isolated compounds.
MATERIALS AND METHODS: the ethanol extract was partitioned by methylene chloride, and n-butanol saturated with water. The fractions were chromatographed to isolate pure compounds. In-vivo anti-inflammatory activity of the ethanol extract, the fractions at a dose of 200 mg/kg, and the isolated compounds (20 mg/kg) was estimated using carrageenan-induced rat paws edema method against indomethacin (20 mg/kg). The activity was supported by histopathological and biochemical parameters.
RESULTS: Three isolated compounds were identified as aromadendrin (C1), 7-O-methyl aromadendrin (C2), and naringenin (C3). Our findings demonstrated that the tested fractions significantly reduced the paw edema starting from the 3rd to the 5th hour as compared to the positive control, compounds C2 and C3 showed the greatest significant reduction in paw edema. The ethanol extract, fractions, C2, and C3 demonstrated an anti-inflammatory potential through reducing the levels of TNF-α, IL-6, and PGE2, as well as COX-2 protein expression compared to the negative control. These results were supported by molecular docking, which revealed that the isolated compounds had high affinity to target COX-1 and COX-2 active sites with docking scores ranging from -7.3 to -9.6 kcal mol-1 when compared to ibubrofen (-7.8 and -7.4 kcal mol-1, respectively). Molecular dynamics simulations were also performed and confirmed the docking results.
CONCLUSION: The results supported the traditional anti-inflammatory potency of E. maculata Hook, and the biochemical mechanisms underlying this activity were highlighted, opening up new paths for the development of potent herbal anti-inflammatory medicine. Finally, our findings revealed that E. maculata resin constituents could be considered as promising anti-inflammatory drug candidates.
Methods: In this study, the MKN28 and MKN74 GC cell lines were treated with ethanol extracts of Allium angulosum L., Allium lusitanicum Lam., Allium sativum L. (from Malaysia and Poland), Allium tibeticum Rendle and Allium ursinum L. The cytotoxicity of the extracts and their influence on COX2 and CDH1 mRNA and protein expression were evaluated as well as their influence on doxorubicin's (DOX) efficacy - a drug that has been used in GC treatment.
Results: Among the tested species, ethanol extracts of A. sativum L. (Poland and Malaysia), A. tibeticum Rendle and A. ursinum L. influenced the levels of CDH1 and COX2, but only in the MKN74 cell line. Thus, it is possible that tumours with increased COX2 expression will be more susceptible to garlic treatment. Observed phenomenon was independent of Allium extract's toxicity. In comparison to DOX, tested extracts were more toxic. Moreover, A. sativum revealed synergistic effect with the drug.
Conclusion: In conclusion, the results indicate the potential application of Allium genus to GC chemoprevention and treatment support through CDH restoration and COX2 downregulation. This issue needs further investigations as it might be used in clinics.
Material and methods: The methanolic extract of PS was prepared in the dose of 500 mg/kg. Twenty-eight male Wistar rats were assigned to 4 equal sized groups: two control groups and two treated groups which were supplemented with either PS or OMZ orally at a dose of 500 mg/kg and 20 mg/kg body weight respectively. After 28 days of treatment, one control group, the PS and OMZ group were subjected to a single exposure of water-immersion restraint stress for 3.5 h. After the last exposure to stress, the stomach was excised for evaluation of the parameters.
Results: Oral supplementation of PS was as effective in preventing the formation of gastric lesion when compared with OMZ (p < 0.05). The increased gastric acidity and MDA due to stress was also reduced with supplementation of PS and OMZ. Only PS had the ability to reduce prostaglandin E2 loss (p = 0.0067) and have the ability to down regulate cyclooxygenase-2 (COX-2) mRNA expression (p = 0.01) with stress exposure.
Conclusions: Piper sarmentosum possesses a similar protective effect against stress-induced gastric lesions as omeprazole. The protective effect was associated with decreased lipid peroxidation, increased prostaglandin E2, reduction in gastric acidity and reduction in COX-2 mRNA expression which was altered by stress.