Active ingredients of ginsenoside, Rg1 and Re, are able to inhibit the proliferation of vascular smooth muscle cells and promote the growth of vascular endothelial cells. These capabilities are of interest for developing a novel drug-eluting stent to potentially solve the current problem of late-stent thrombosis and poor endotheliazation. Therefore, this study was aimed to incorporate ginsenoside into degradable coating of poly(lactic-co-glycolic acid) (PLGA). Drug mixture composed of ginseng extract and 10% to 50% of PLGA (xPLGA/g) was coated on electropolished stainless steel 316L substrate by using a dip coating technique. The coating was characterized principally by using attenuated total reflectance-Fourier transform infrared spectroscopy, scanning electron microscopy and contact angle analysis, while the drug release profile of ginsenosides Rg1 and Re was determined by using mass spectrometry at a one month immersion period. Full and homogenous coating coverage with acceptable wettability was found on the 30PLGA/g specimen. All specimens underwent initial burst release dependent on their composition. The 30PLGA/g and 50PLGA/g specimens demonstrated a controlled drug release profile having a combination of diffusion- and swelling-controlled mechanisms of PLGA. The study suggests that the 30PLGA/g coated specimen expresses an optimum composition which is seen as practicable for developing a controlled release drug-eluting stent.
The use of plants as therapy is not alien to man. Among plants that could offer novel choice to the limited therapeutic alternatives is Amaranthus caudatus. It is typically rich in bioactive compounds such as phenolic acids, lycopene, polyphenols, unsaturated fatty acids, glucosinolates, proteins, soluble peptides, flavonoids, squalene and betacarotene to say the least. As widely reported in the literature, its various capacities to fight diseases when ingested as food or medicine may not be unconnected to these bioactive compounds available in high concentrations. This current review, therefore, harmonized reports from scientific investigations that validated the use of A. caudatus for the treatment of various ailments such as Diabetes mellitus, cancer, malaria, hypercholesterolemia, atherosclerosis, helminthic and bacterial infections, inflammation, hepatic diseases and cardiovascular complications. With this, we hope to put in perspective, the key therapeutic options available in the plant.
Keratins are a group of important proteins in skin and hair and as biomaterials they can provide desirable properties such as strength, biocompatibility, and moisture regaining and retaining. The aim of this work is to develop water-soluble keratin polypeptides from sheep wool and then explore how their surface adsorption behaves with and without surfactants. Successful preparation of keratin samples was demonstrated by identification of the key components from gel electrophoresis and the reproducible production of gram scale samples with and without SDS (sodium dodecylsulphate) during wool fibre dissolution. SDS micelles could reduce the formation of disulphide bonds between keratins during extraction, reducing inter-molecular crosslinking and improving keratin polypeptide solubility. However, Zeta potential measurements of the two polypeptide batches demonstrated almost identical pH dependent surface charge distributions with isoelectric points around pH 3.5, showing complete removal of SDS during purification by dialysis. In spite of different solubility from the two batches of keratin samples prepared, very similar adsorption and aggregation behavior was revealed from surface tension measurements and dynamic light scattering. Mixing of keratin polypeptides with SDS and C12TAB (dodecyltrimethylammonium bromide) led to the formation of keratin-surfactant complexes that were substantially more effective at reducing surface tension than the polypeptides alone, showing great promise in the delivery of keratin polypeptides via the surface active complexes. Neutron reflection measurements revealed the coexistence of surfactant and keratin polypeptides at the interface, thus providing the structural support to the observed surface tension changes associated with the formation of the surface active complexes.
Phytochemical studies on the stem bark of Garcinia nervosa has resulted in the discovery of one new pyranoxanthone derivative, garner xanthone (1) and five other compounds, 1,5-dihydroxyxanthone (2), 6-deoxyisojacareubin (3), 12b-hydroxy-des-D-garcigerrin A (4) stigmasterol (5), and β-sitosterol (6). The structures of these compounds were elucidated with the aid of spectroscopic techniques, such as NMR and MS. The crude extracts of the plant were assessed for their antimicrobial activity.
The 2,2-diphenyl-1-picryl hydrazyl (DPPH) radical, nitric oxide, reducing power, hydrogen peroxide scavenging, and total antioxidant activities of the methanol extract, n-hexane, dichloromethane, ethyl acetate, butanol and aqueous fractions of the seed of Telfairia occidentalis were evaluated. Total phenolic content was determined using the Folin-Ciocalteu method. The dichloromethane fraction exhibited the highest DPPH radical scavenging, reducing power and total antioxidant activities. Two pure compounds which were identified by FTIR, H-and 2D NMR and Mass spectroscopy as 9-octadecenoic acid (TOS B) and 10-hydroxyoctadecanoic acid (TOS C) and four oily isolates, TOS A, TOS D, TOS E and TOS F were obtained from the dichloromethane fraction. TOS E had the highest DPPH radical scavening activity comparable to that of ascorbic acid. GC-MS analysis revealed the major compounds in TOS E as 4-(2,2-Dimethyl-6-methylene cyclohexylidene)-2-butanol; 3-(3-hydroxybutyl)-2,4,4-trimethyl-2-cyclohexene-1-one and 1,2-Benzenedicarboxylic acid disooctyl ester. Thus, the seed of T. occidentalis can be consumed for its antioxidant property.
Melting dynamics of hafnium clusters are investigated using a novel approach based on the idea of the chemical similarity index. Ground state configurations of small hafnium clusters are first derived using Basin-Hopping and Genetic Algorithm in the parallel tempering mode, employing the COMB potential in the energy calculator. These assumed ground state structures are verified by using the Low Lying Structures (LLS) method. The melting process is carried out either by using the direct heating method or prolonged simulated annealing. The melting point is identified by a caloric curve. However, it is found that the global similarity index is much more superior in locating premelting and total melting points of hafnium clusters.
Biocompatible metals have been revolutionizing the biomedical field, predominantly in human implant applications, where these metals widely used as a substitute to or as function restoration of degenerated tissues or organs. Powder metallurgy techniques, in specific the metal injection moulding (MIM) process, have been employed for the fabrication of controlled porous structures used for dental and orthopaedic surgical implants. The porous metal implant allows bony tissue ingrowth on the implant surface, thereby enhancing fixation and recovery. This paper elaborates a systematic classification of various biocompatible metals from the aspect of MIM process as used in medical industries. In this study, three biocompatible metals are reviewed-stainless steels, cobalt alloys, and titanium alloys. The applications of MIM technology in biomedicine focusing primarily on the MIM process setting parameters discussed thoroughly. This paper should be of value to investigators who are interested in state of the art of metal powder metallurgy, particularly the MIM technology for biocompatible metal implant design and development.
Green porous and ecofriendly scaffolds have been considered as one of the potent candidates for tissue engineering substitutes. The objective of this study is to investigate the biocompatibility of hydroxyethyl cellulose (HEC)/silver nanoparticles (AgNPs), prepared by the green synthesis method as a potential host material for skin tissue applications. The substrates which contained varied concentrations of AgNO3(0.4%-1.6%) were formed in the presence of HEC, were dissolved in a single step in water. The presence of AgNPs was confirmed visually by the change of color from colorless to dark brown, and was fabricated via freeze-drying technique. The outcomes exhibited significant porosity of >80%, moderate degradation rate, and tremendous value of water absorption up to 1163% in all samples. These scaffolds of HEC/AgNPs were further characterized by SEM, UV-Vis, ATR-FTIR, TGA, and DSC. All scaffolds possessed open interconnected pore size in the range of 50-150μm. The characteristic peaks of Ag in the UV-Vis spectra (417-421nm) revealed the formation of AgNPs in the blend composite. ATR-FTIR curve showed new existing peak, which implies the oxidation of HEC in the cellulose derivatives. The DSC thermogram showed augmentation in Tgwith increased AgNO3concentration. Preliminary studies of cytotoxicity were carried out in vitro by implementation of the hFB cells on the scaffolds. The results substantiated low toxicity of HEC/AgNPs scaffolds, thus exhibiting an ideal characteristic in skin tissue engineering applications.
Development of thermophilic composting for maximizing NH3 gas recovery would enable the production of a nitrogen source which is free from pathogen/heavy metal, for the cultivation of high-value microalgae. The present study examined the effect of NH3 recovery, nitrogen mass balance, and microbial community dynamics on thermophilic composting of shrimp aquaculture sludge. The emission of NH3 gas at 60 and 70 °C was 14.7% and 15.6%, respectively, which was higher than that at 50 °C (9.0%). The nitrogen mass balance analysis revealed that higher temperatures enhanced the solubilization of non-dissolved nitrogen and liberation of NH3 gas from the produced NH4+-N. High-throughput microbial community analysis revealed the shift of the dominant bacterial group from Bacillus to Geobacillus with the rise of composting temperature. In conclusion, thermophilic composting of shrimp aquaculture sludge at 60-70 °C was the most favorable condition for enhancing NH3 gas recovery.
Amniotic membrane has the potential to be used as scaffold in various tissue engineering applications. However, increasing its biostability at the same time maintaining its biocompatibility is important to enhance its usage as a scaffold. This studied characteristics genipin-crosslinked amniotic membrane as a bioscaffold. Redundant human amniotic membranes (HAM) divided into native (nAM), decellularized (dAM) and genipin-crosslinked (clAM) groups. The dAM and clAM group were decellularized using thermolysin (TL) and sodium hydroxide (NaOH) solution. Next, clAM group was crosslinked with 0.5% and 1.0% (w/v) genipin. The HAM was then studied for in vitro degradation, percentage of swelling, optical clarity, ultrastructure and mechanical strength. Meanwhile, fibroblasts isolated from nasal turbinates were then seeded onto nAM, dAM and clAM for biocompatibility studies. clAM had the slowest degradation rate and were still morphologically intact after 30 days of incubation in 0.01% collagenase type 1 solution. The dAM had a significantly highest percentage of swelling than other groups (p
Cross-linked beads of activated oil palm ash zeolite/chitosan (Z-AC/C) composite were prepared through the hydrothermal treatment of NaOH activated oil palm ash followed by beading with chitosan. The effects of initial dye concentration (50-400mg/L), temperature (30°C-50°C) and pH (3-13) on batch adsorption of methylene blue (MB) and acid blue 29 (AB29) were studied. Adsorption of both dyes was better described by Pseudo-second-order kinetics and Freundlich isotherm model. The maximum adsorption capacities of Z-AC/C were 151.51, 169.49, and 199.20mg/g for MB and 212.76, 238.09, and 270.27mg/g for AB29 at 30°C, 40°C, and 50°C, respectively.
Reactive green 19, acid orange 7 and methylene blue are employed as the organic pollutants in this work. A photocatalytic fuel cell is constructed based on the idea of immobilizing zinc oxide onto zinc photoanode and platinum loaded carbon cathode, both evaluated under sunlight and ultraviolet irradiation, respectively. Influence of light and dye structures on the performance of photocatalytic fuel cell are examined. With reactive green 19, 93% and 86% of color removal are achieved after 8 h of photocatalytic fuel cell treatment under sunlight and ultraviolet irradiation, respectively. The decolorization rate of diazo reactive green 19 is higher than acid orange 7 (monoazo dye) when both dyes are treated by photocatalytic fuel cell under sunlight and ultraviolet irradiation, as the electron releasing groups (-NH-triazine) allow reactive green 19 easier to be oxidized. Comparatively, acid orange 7 is less favorable to be oxidized. The degradation of methylene blue is enhanced under sunlight irradiation due to the occurrence of self-sensitized photodegradation. When methylene blue is employed in the photocatalytic fuel cell under sunlight irradiation, the short circuit current (0.0129 mA cm-2) and maximum power density (0.0032 mW cm-2) of photocatalytic fuel cell greatly improved.
Nanofiber membrane chromatography integrates liquid membrane chromatography and nanofiber filtration into a single-step purification process. Nanofiber membrane can be functionalised with affinity ligands for promoting binding specificity of membrane. Dye molecules are a good affinity ligand for nanofiber membrane due to their low cost and high binding affinity. In this study, a dye-affinity nanofiber membrane (P-Chitosan-Dye membrane) was prepared by using polyacrylonitrile nanofiber membrane modified with chitosan molecules and immobilized with dye molecules. Reactive Orange 4, commercially known as Procion Orange MX2R, was found to be the best dye ligand for membrane chromatography. The binding capacity of P-Chitosan-Dye membrane for lysozyme was investigated under different operating conditions in batch mode. Furthermore, desorption of lysozyme using the P-Chitosan-Dye membrane was evaluated systematically. The recovery percentage of lysozyme was found to be ~100%. The optimal conditions obtained from batch-mode study were adopted to develop a purification process to separate lysozyme from chicken egg white. The process was operated continuously using the membrane chromatography and the characteristic of the breakthrough curve was evaluated. At a lower flow rate (i.e., 0.1 mL/min), the total recovery of lysozyme and purification factor of lysozyme were 98.59% and 56.89 folds, respectively.
The utilization of renewable and functional group enriched nano-lignin as bio-additve in fabricating composite has become the focus of attention worldwide. Herein, lignin nanoparticles in the form of hollow spheres with the diameter of the order of 138 ± 39 nm were directly prepared from agro-industrial waste (palm kernel shell) using recyclable tetrahydrofuran in an acidified aqueous system without any chemical modification steps. We then fabricated a new chitosan/nano-lignin composite material as highly efficient sorbent, as demonstrated by efficient removal (~83%) of methylene blue (MB) dye under natural pH conditions. The adsorption process obeyed pseudo-second-order kinetics and adequate fitting of the adsorption data using Langmuir model suggested a monolayer adsorption with a maximum adsorption capacity of 74.07 mg g-1. Moreover, thermodynamic study of the system revealed spontaneous and endothermic nature of the sorption process. Further studies revealed that chitosan composite with nano-lignin showed better performance in dye decontamination compared to native chitosan and chitosan/bulk lignin composite. This could essentially be attributed to synergistic effects of size particularity (nano-effect) and incorporated functionalities due to lignin nanoparticles. Recyclability study performed in four repeated adsorption/regeneration cycles revealed recyclable nature of as-prepared composite, whilst adsorption experiments using spiked real water samples indicated recoveries as high as 89%. Based on this study, as-prepared bio-nanocomposite may thus be considered as an efficient and reusable adsorptive platform for the decontamination of water supplies.
The ability to predict local structural features of a protein from the primary sequence is of paramount importance for unraveling its function in absence of experimental structural information. Two main factors affect the utility of potential prediction tools: their accuracy must enable extraction of reliable structural information on the proteins of interest, and their runtime must be low to keep pace with sequencing data being generated at a constantly increasing speed. Here, we present NetSurfP-2.0, a novel tool that can predict the most important local structural features with unprecedented accuracy and runtime. NetSurfP-2.0 is sequence-based and uses an architecture composed of convolutional and long short-term memory neural networks trained on solved protein structures. Using a single integrated model, NetSurfP-2.0 predicts solvent accessibility, secondary structure, structural disorder, and backbone dihedral angles for each residue of the input sequences. We assessed the accuracy of NetSurfP-2.0 on several independent test datasets and found it to consistently produce state-of-the-art predictions for each of its output features. We observe a correlation of 80% between predictions and experimental data for solvent accessibility, and a precision of 85% on secondary structure 3-class predictions. In addition to improved accuracy, the processing time has been optimized to allow predicting more than 1000 proteins in less than 2 hours, and complete proteomes in less than 1 day.
This research work represents the first major step towards constructing an effective therapeutic silibinin (SB) in cancer treatment using oxidised multi-walled carbon nanotubes (MWCNT-COOH) functionalised with biocompatible polymers as the potential drug carrier. In an attempt to increase the solubility and dispersibility of SB-loaded nanotubes (MWSB), four water-soluble polymers were adopted in the preparation process, namely polysorbate 20 (T20), polysorbate 80 (T80), polyethylene glycol (PEG) and chitosan (CHI). From the geometry point of view, the hydrophobic regions of the nanotubes were loaded with water-insoluble SB while the hydrophilic polymers functionalised on the outer surfaces of the nanotubes serve as a protective shell to the external environment. The chemical interaction between MWSB nanocomposites and polymer molecules was confirmed by Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. Besides, high-resolution transmission electron microscopy (HR-TEM), field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA) and UV-visible spectrophotometry were also employed to characterise the synthesised nanocomposites. The morphological study indicated that the polymers were deposited on the external surfaces of MWSB and the nanocomposites were seen to preserve their tubular structures even after the coating process was applied. The TGA results revealed that the incorporation of biopolymers practically improved the overall thermal stability of the coated MWSB nanocomposites. Evaluation of the in vitro effect on drug release rate by the nanocomposites was found to follow a biphasic release manner, showing a fast release at an initial stage and then a sustained-release over 2500 min. Besides, the drug release mechanisms of the nanocomposites demonstrated that the amount of SB released in the simulated environment was governed by pseudo-second order in which, the rate-limiting step mainly depends on diffusion of drug through chemisorption reaction. Finally, MTT assay showed that the coated MWSB nanocomposites on 3T3 cells were very much biocompatible at a concentration up to 100 g/mL, which is an evidence of MWSB reduced cytotoxicity.
Capilliposide B (CPS-B) and Capilliposide C (CPS-C), as the key components in Lysimachia capillipes Hemsl., increasingly aroused the interest and research concern of many researchers due to the good bioactivities. Nowadays, the reference standards of CPS-B and CPS-C yield were very limited. Due to the deficit of reference standards, the determination could be difficult to carry out, and the quality control and evaluation would be restrained afterwards. To solve this urgent problem, a quantitative analysis of multi-components by single-marker (QAMS) method was proposed and established based on high-performance liquid-chromatography tandem evaporative light-scattering detector. In this QAMS method, the content of the two bioactive components could be calculated by buddlejasaponin IV, which is applied as an external standard and readily obtained. And the methodological experiments were evaluated and indicated accuracy, stability and feasibility of this QAMS method. Therefore, in this study, this built method would properly meet the requirement of determination of CPS-B, CPS-C and quality control of the L. capillipes Hemsl. plant.
In this work, graphene oxide (GO) and its reduced graphene oxide-zinc oxide nanocomposite (rGO-ZnO) was used for the removal of Cr (VI) from aqueous medium. By employing a variety of characterization techniques, morphological and structural properties of the adsorbents were determined. The adsorption study was done by varying concentration, temperature, pH, time, and amount of adsorbent. The results obtained confirmed that rGO-ZnO is a more economical and promising adsorbent for removing Cr (VI) as compared to GO. Kinetic study was also performed, which suggested that sorption of Cr (VI) follows the pseudo-first-order model. For equilibrium study, non-linear Langmuir was found a better fitted model than its linearized form. The maximum adsorption capacity calculated for GO and rGO-ZnO nanocomposite were 19.49 mg/g and 25.45 mg/g, respectively. Endothermic and spontaneous nature of adsorption was detected with positive values of ΔS (change in entropy), which reflects the structural changes happening at the liquid/solid interface.
Over the past decade, intranasal (IN) delivery has been gaining attention as an alternative approach to conventional drug delivery routes targeting the brain. Carbamazepine (CBZ) is available as an orally ingestible formulation. The present study aims to develop a thermoreversible in situ gelling system for delivering CBZ via IN route. A cold method of synthesis has been used to tailor and optimize the thermoreversible gel composition, using poloxamer 407 (P407) (15-20% w/v) and iota carrageenan (ɩ-Cg) (0.15-0.25% w/v). The developed in situ gel showed gelation temperatures (28-33°C), pH (4.5-6.5), rheological properties (pseudoplastic, shear thinning), and mucoadhesive strength (1755.78-2495.05 dyne/cm2). The in vitro release study has shown sustained release behavior (24 h) for gel, containing significant retardation of CBZ release. The release kinetics fit to the Korsmeyer-Peppas model, suggesting the non-Fickian diffusion type controlled release behavior. Ex vivo permeation through goat nasal mucosa showed sustained release from the gel containing 18% P407 with the highest cumulative drug permeated (243.94 µg/cm2) and a permeation flux of 10.16 µg/cm2/h. After treatment with CBZ in situ gel, the barrier function of nasal mucosa remained unaffected. Permeation through goat nasal mucosa using in situ gel has demonstrated a harmless nasal delivery, which can provide a new dimension to deliver CBZ directly to the brain bypassing the blood-brain barrier.