Displaying publications 161 - 180 of 288 in total

Abstract:
Sort:
  1. Martins JM, Gul A, Mata MN, Haider SA, Ahmad S
    Heliyon, 2023 Jun;9(6):e16668.
    PMID: 37292261 DOI: 10.1016/j.heliyon.2023.e16668
    This study evaluates the determinants of Economic freedom, innovation and technology concerning Chinese foreign direct investment. The aim of the study is to explore, that how these determinants influence Outward Foreign Direct Investment (OFDI) from China toward different regional economies. The study will enrich the existing literature by providing useful policies to the concerned economies to influence more Chinese FDI to host economies. The panel data set includes 27 (African, European, and Asian) Countries data over the period of 2003 to 2018. Moreover, the study employed panel data analysis and the result reveals that property rights, patents residents (pantentAR), Research & Development (R&D), Inflation, official exchange rate (OER), and Tax Burden (TaxB) have a strong positive and significant impact on Chinese OFDI in the selected sample countries, While Government Expenditures (GovE) has positive, but insignificant impact on Chinese OFDI. On the other hand, Chinese OFDI is negatively and statistically significant association with Business Freedom (BusF). This study will put forth considerable policies to the concerned to induce further inflows of Chinese FDI into the host countries. The policymakers should build policies that provide a comfortable environment for business activities and mostly focus on value-added production i.e., expenditures on R&D to enhance high-technology exports because they efficiently attract FDI into host countries. Another key factor is Tax Burden (TaxB), which significantly influences Chinese FDI along with other factors.
  2. Butt AD, Khan J, Ahmad S, Ghaffar A, Abdullah Al-Gburi AJ, Hussein M
    PLoS One, 2023;18(4):e0280042.
    PMID: 37053176 DOI: 10.1371/journal.pone.0280042
    Biomedical telemetry relies heavily on implantable antennas. Due to this, we have designed and tested a compact, a circularly polarized, a low-profile biomedical implantable antenna that operate in the 2.45 GHz ISM band. In order to keep the antenna compact, modified co-planar waveguide (CPW) technology is used. Slotted rectangular patch with one 45-degree angle slot and truncated little patch on the left end of the ground plane generate a frequency-range antenna with circular polarization. Using a 0.25-millimeter-thick Roger Duroid-RT5880 substrate with a thickness of εr = 2.2, tanδ = 0.0009 provides flexibility. The volume of the antenna is 21 mm x 13.5 mm x 0.254 mm (0.25λg × 0.16λg × 0.003λg). The antenna covers 2.35-2.55 GHz (200 MHz) in free space and 1.63-1.17 GHz (1.17 GHz) in epidermal tissue. With skin tissue that has more bandwidth, the (x and y)-axis bends of the antenna are also simulated via the simulation. Bended antenna simulations and measurements show excellent agreement. At 2.45 GHz, the skin-like gel had -10dB impedance and 3dB axial ratio (AR) bandwidths of 47.7 and 53.8%, respectively. The ultimate result is that the SAR values are 0.78 W/kg in skin over 1 g of bulk tissue, as determined by simulations. The suggested SAR values are lower than the FCC's maximum allowable limit (FCC). This antenna is small enough to be implanted in the body, making it perfect for biomedical applications.
  3. Kayani UN, Aysan AF, Gul A, Haider SA, Ahmad S
    PLoS One, 2023;18(10):e0291261.
    PMID: 37819995 DOI: 10.1371/journal.pone.0291261
    Maintaining a stable exchange rate is a challenging task for the world, especially for developing economies. This study examines the impact of asymmetric exchange rates on trade flows in selected Asian countries and finds that the effects of increased exchange rate volatility on exports and imports differ among Pakistan, Malaysia, Japan, and Korea. The quarterly data from the period 1980 to 2018 is collected from the International Financial Statistics (IFS) database maintained by the International Monetary Fund (IMF). We employ both linear and non-linear Autoregressive Distributed Lag (ARDL) models for estimation. The non-linear models yielded more significant findings, while the linear models did not indicate any significant effects of exchange rate volatility on trade flows. The results of the study suggest that in the case of Pakistan, both the linear and non-linear models indicate that increased exchange rate volatility adversely affects exports and imports, while decreased volatility enhances both. This implies that stabilizing the exchange rate would be beneficial for Pakistan's trade. In contrast, the linear model applied to Malaysia shows no long-run effects of exchange rate volatility on exports. However, the result suggests that decreased volatility stimulates Malaysia's exports. Therefore, in the case of Malaysia, stabilizing the exchange rate could contribute to boosting exports. We also found that increased exchange rate volatility boosts exports of Japan. On the other hand, decreased volatility hurts exports of Japan. As for the long-run effects of exchange rate volatility on imports, we found that increased volatility boosts imports of Korea. The study provides various policy implications regarding the impact of exchange rate volatility on trade flows in developing economies. The study highlights the importance of country-specific considerations in understanding the impact of exchange rate volatility on trade flows, and has important policy implications for promoting trade and economic growth in these nations. It emphasizes the need to model exchange rate volatility separately for developed and developing countries and to continue research and analysis to identify ways to mitigate its negative effects on the economy.
  4. Sulaiman AS, Ahmad S, Ismail NA, Rahman RA, Jamil MA, Mohd Dali AZ
    Saudi Med J, 2013 Aug;34(8):819-23.
    PMID: 23974453
    To evaluate the prevalence of obstetrical anal sphincter injuries (OASIS), which include third and fourth degree perineal tears in primigravida in routine versus selective mediolateral episiotomy. Secondly, to determine the rate of episiotomy in local settings.
  5. Ahmad S, Abdul Qadir M, Ahmed M, Imran M, Yousaf N, Asari A, et al.
    J Biomol Struct Dyn, 2023 Aug 29.
    PMID: 37643014 DOI: 10.1080/07391102.2023.2252083
    To explore the new mode of action and reduce side effects, making conjugates of existing drugs is becoming an attractive tool in the realm of medicinal chemistry. In this work, we exploited this approach and synthesized new conjugates to assess their activities against the enzymes involved in different pathological conditions. Specifically, we design and synthesized conjugates involving acetylsalicylic acid and sulfa drugs, validating the newly crafted conjugates using techniques like IR, 1HNMR, 13CNMR, and elemental analysis. These conjugates underwent assessment for their ability to inhibit cyclooxygenase-2 (COX-2), urease enzymes, and their anti-inflammatory potential. A competitive mode of urease inhibition was observed for acetylsalicylic acid conjugated with sulfanilamide, sulfacetamide, and sulfadiazine with IC50 of 2.49 ± 0.35 µM, 6.21 ± 0.28 µM, and 6.57 ± 0.44 µM, respectively. Remarkably, the acetylsalicylic acid-sulfamethoxazole conjugate exhibited exceptional anti-inflammatory activity, effectively curtailing induced edema by 83.7%, a result akin to the reference anti-inflammatory drug indomethacin's performance (86.8%). Additionally, it demonstrated comparable COX-2 inhibition (75.8%) to the reference selective COX-2 inhibitor celecoxib that exhibited 77.1% inhibition at 10 µM concentration. To deepen our understanding, we employed molecular docking techniques to predict the binding interactions of competitive inhibitors with COX-2 and urease receptors. Additionally, MD simulations were carried out, confirming the stability of inhibitor-target complexes throughout the simulation period, devoid of significant conformational changes. Collectively, our research underscores the potential of coupling approved medicinal compounds to usher in novel categories of pharmacological agents, holding promise for addressing a wide spectrum of pathological disorders involving COX-2 and urease enzymes.Communicated by Ramaswamy H. Sarma.
  6. Ishak NF, Wan Azhar WMA, Ahmad S, Khairuddin AU, Laboh R
    Plant Dis, 2023 Oct 19.
    PMID: 37858968 DOI: 10.1094/PDIS-06-23-1076-PDN
    In Malaysia, bell pepper (Capsicum annuum var. grossum), also known as sweet pepper or paprika, is one of the highly imported vegetable crops. In 2021 alone, Malaysia imported nearly 74 thousand metric tons of its chilies, including bell peppers, from other countries (DOSM, 2022). Often, farmers grow the bell peppers in moderate to cool conditions within highland regions for local commercial purposes. In June 2022, the Malaysian Agricultural Research and Development Institute (MARDI) in Serdang, Selangor, conducted a research study to grow lowland bell peppers under a glasshouse rain protection system. A disease inspection carried out found fruit rot on approximately 30% of mature bell pepper fruits in the greenhouse. Symptoms appeared as firm and sunken black lesions covered with white to light pink spore masses on the outer surface, which eventually fell off. Infected fruit parts were disinfected with 10% hypochlorite (NaOCl) for 2 min, followed by double washing with sterile distilled water, air-dried, and placed onto potato dextrose agar (PDA). After 3 days of incubation, the fungal colonies that grew from the symptomatic tissue pieces were transferred onto new PDA to obtain pure cultures. The pure fungal colony appeared dense, whitish aerial mycelium that slowly became cream to pinkish-orange after 7 days of incubation at room temperature (25±2 °C). To examine the morphology features, the pure cultures were subbed onto carnation leaf agar (CLA) and incubated at 25±2°C for 14 days. Macroconidia were abundant, slightly curved with tapered apical cells, 3- to 5-septate, and ranged between 21.8 and 34.0 x 3.0 and 5.1 μm. Microconidia were single-celled, often 1-septate, and ranged between 10.0 and 12.6 x 2.1 and 3.4 μm. Chlamydospores were globose and in chains. The fungus was identified as Fusarium sp. according to Fusarium key by Leslie and Summerell (2006). PCR amplification and DNA sequencing were performed using primers EF1F/EF2R and ITS1/ITS4 (O'Donnell et al., 1998; White et al., 1990) to amplify the partial elongation factor 1-alpha (TEF1-α) gene and internal transcribed spacer region (ITS), respectively. The TEF1-α and ITS sequences of this isolate were deposited in GenBank as OQ672911 and OR349657. BLAST analysis with TEF1-α gene sequences revealed 99.74% and 99.33% sequence identity with F. pernambucanum (accession no. ON330424) and Fusarium isolate NRRL 25134 (accession no. JF740755), respectively; both belonged to the Fusarium incarnatum-equiseti species complex (FIESC). BLAST search of the TEF1-α sequence in the database of the International Mycological Association (www.mycobank.org) showed 99.18% identity with FIESC (NRRL 36548). The ITS sequences were 100% identical to those of F. incarnatum (MT563420, MT563419, and MT563418). Pathogenicity test was conducted on three unwounded and three wounded mature red bell pepper fruits (SP299 Red Masta variety). Two healthy bell peppers were used as controls for each treatment. Prior to inoculation, the fruits were surface-sterilized by dipping in 70% ethanol and rinsed twice with sterile distilled water. Unwounded fruits were inoculated with fungal mycelium disks (5 mm diameter), whereas control fruits were inoculated with sterile PDA agar disks. For wound method, 6 µl of spore suspension (1x106 spores/ml) was obtained from 7-day-old cultures and injected (1 mm depth) into the fruit wall using a sterile syringe needle. Control fruits were inoculated with sterile distilled water only. Each fruit was inoculated with the inoculum at three distinct spots and kept in a humid chamber at a temperature of 25±2 °C. The pathogenicity test was done twice. Five days post-inoculation, the control fruits showed no symptoms, whereas all inoculated wounded and non-wounded fruits developed necrotic lesions with white mycelium growing on the inoculation points. The pathogen was successfully re-isolated from the infected fruits and morphologically identified as FIESC, fulfilling Kochs postulates. It has been reported previously that the members of FIESC are responsible for the fruit rot of bell peppers under greenhouse conditions (Ramdial et al., 2016). To the best of our knowledge, this is the first report of FIESC causing fruit rot on greenhouse bell peppers in Malaysia. This fruit rot disease may impose significant constraints on bell pepper production in Malaysia; hence, effective strategies to control the pathogen and prevent disease dispersal should be implemented.
  7. Ahmad S, Usman Mirza M, Yean Kee L, Nazir M, Abdul Rahman N, Trant JF, et al.
    Chem Biol Drug Des, 2021 Oct;98(4):604-619.
    PMID: 34148292 DOI: 10.1111/cbdd.13914
    3CLpro is essential for SARS-CoV-2 replication and infection; its inhibition using small molecules is a potential therapeutic strategy. In this study, a comprehensive crystallography-guided fragment-based drug discovery approach was employed to design new inhibitors for SARS-CoV-2 3CLpro. All small molecules co-crystallized with SARS-CoV-2 3CLpro with structures deposited in the Protein Data Bank were used as inputs. Fragments sitting in the binding pocket (87) were grouped into eight geographical types. They were interactively coupled using various synthetically reasonable linkers to generate larger molecules with divalent binding modes taking advantage of two different fragments' interactions. In total, 1,251 compounds were proposed, and 7,158 stereoisomers were screened using Glide (standard precision and extra precision), AutoDock Vina, and Prime MMGBSA. The top 22 hits having conformations approaching the linear combination of their constituent fragments were selected for MD simulation on Desmond. MD simulation suggested 15 of these did adopt conformations very close to their constituent pieces with far higher binding affinity than either constituent domain alone. These structures could provide a starting point for the further design of SARS-CoV-2 3CLpro inhibitors with improved binding, and structures are provided.
  8. Ahmad S, Valli H, Smyth R, Jiang AY, Jeevaratnam K, Matthews HR, et al.
    J Cell Physiol, 2019 Apr;234(4):3921-3932.
    PMID: 30146680 DOI: 10.1002/jcp.27183
    Peroxisome proliferator-activated receptor-γ coactivator-1 deficient (Pgc-1β-/- ) murine hearts model the increased, age-dependent, ventricular arrhythmic risks attributed to clinical conditions associated with mitochondrial energetic dysfunction. These were accompanied by compromised action potential (AP) upstroke rates and impaired conduction velocities potentially producing arrhythmic substrate. We tested a hypothesis implicating compromised Na+ current in these electrophysiological phenotypes by applying loose patch-clamp techniques in intact young and aged, wild-type (WT) and Pgc-1β-/- , ventricular cardiomyocyte preparations for the first time. This allowed conservation of their in vivo extracellular and intracellular conditions. Depolarising steps elicited typical voltage-dependent activating and inactivating inward Na+ currents with peak amplitudes increasing or decreasing with their respective activating or preceding inactivating voltage steps. Two-way analysis of variance associated Pgc-1β-/- genotype with independent reductions in maximum peak ventricular Na+ currents from -36.63 ± 2.14 (n = 20) and -35.43 ± 1.96 (n = 18; young and aged WT, respectively), to -29.06 ± 1.65 (n = 23) and -27.93 ± 1.63 (n = 20; young and aged Pgc-1β-/- , respectively) pA/μm2 (p 
  9. Ahmad S, Valli H, Chadda KR, Cranley J, Jeevaratnam K, Huang CL
    Mech Ageing Dev, 2018 Jul;173:92-103.
    PMID: 29763629 DOI: 10.1016/j.mad.2018.05.004
    INTRODUCTION: Ageing and age-related bioenergetic conditions including obesity, diabetes mellitus and heart failure constitute clinical ventricular arrhythmic risk factors.

    MATERIALS AND METHODS: Pro-arrhythmic properties in electrocardiographic and intracellular recordings were compared in young and aged, peroxisome proliferator-activated receptor-γ coactivator-1β knockout (Pgc-1β-/-) and wild type (WT), Langendorff-perfused murine hearts, during regular and programmed stimulation (PES), comparing results by two-way ANOVA.

    RESULTS AND DISCUSSION: Young and aged Pgc-1β-/- showed higher frequencies and durations of arrhythmic episodes through wider PES coupling-interval ranges than WT. Both young and old, regularly-paced, Pgc-1β-/- hearts showed slowed maximum action potential (AP) upstrokes, (dV/dt)max (∼157 vs. 120-130 V s-1), prolonged AP latencies (by ∼20%) and shortened refractory periods (∼58 vs. 51 ms) but similar AP durations (∼50 ms at 90% recovery) compared to WT. However, Pgc-1β-/- genotype and age each influenced extrasystolic AP latencies during PES. Young and aged WT ventricles displayed distinct, but Pgc-1β-/- ventricles displayed similar dependences of AP latency upon (dV/dt)max resembling aged WT. They also independently increased myocardial fibrosis. AP wavelengths combining activation and recovery terms paralleled contrasting arrhythmic incidences in Pgc-1β-/- and WT hearts. Mitochondrial dysfunction thus causes pro-arrhythmic Pgc-1β-/- phenotypes by altering AP conduction through reducing (dV/dt)max and causing age-dependent fibrotic change.

  10. Ahmad S, Drag MH, Salleh SM, Cai Z, Nielsen MO
    BMC Genomics, 2021 May 11;22(1):338.
    PMID: 33975549 DOI: 10.1186/s12864-021-07672-5
    BACKGROUND: Early life malnutrition is known to target adipose tissue with varying impact depending on timing of the insult. This study aimed to identify differentially expressed genes in subcutaneous (SUB) and perirenal (PER) adipose tissue of 2.5-years old sheep to elucidate the biology underlying differential impacts of late gestation versus early postnatal malnutrition on functional development of adipose tissues. Adipose tissues were obtained from 37 adult sheep born as twins to dams fed either NORM (fulfilling energy and protein requirements), LOW (50% of NORM) or HIGH (110% of protein and 150% of energy requirements) diets in the last 6-weeks of gestation. From day 3 to 6 months of age, lambs were fed high-carbohydrate-high-fat (HCHF) or moderate low-fat (CONV) diets, and thereafter the same moderate low-fat diet.

    RESULTS: The gene expression profile of SUB in the adult sheep was not affected by the pre- or early postnatal nutrition history. In PER, 993 and 186 differentially expressed genes (DEGs) were identified in LOW versus HIGH and NORM, respectively, but no DEG was found between HIGH and NORM. DEGs identified in the mismatched pre- and postnatal nutrition groups LOW-HCHF (101) and HIGH-HCHF (192) were largely downregulated compared to NORM-CONV. Out of 831 DEGs, 595 and 236 were up- and downregulated in HCHF versus CONV, respectively. The functional enrichment analyses revealed that transmembrane (ion) transport activities, motor activities related to cytoskeletal and spermatozoa function (microtubules and the cytoskeletal motor protein, dynein), and responsiveness to the (micro) environmental extracellular conditions, including endocrine and nervous stimuli were enriched in the DEGs of LOW versus HIGH and NORM. We confirmed that mismatched pre- and postnatal feeding was associated with long-term programming of adipose tissue remodeling and immunity-related pathways. In agreement with phenotypic measurements, early postnatal HCHF feeding targeted pathways involved in kidney cell differentiation, and mismatched LOW-HCHF sheep had specific impairments in cholesterol metabolism pathways.

    CONCLUSIONS: Both pre- and postnatal malnutrition differentially programmed (patho-) physiological pathways with implications for adipose functional development associated with metabolic dysfunctions, and PER was a major target.

  11. Foo RQ, Ahmad S, Lai KS, Idrus Z, Yusoff K, Liang JB
    Front Physiol, 2020;11:555122.
    PMID: 33071816 DOI: 10.3389/fphys.2020.555122
    One of the beneficial effects of non-digestible oligosaccharides (NDOs) is their anti-inflammatory effects on host animals. While conventional animal studies require that analysis be done after samples have been taken from the host, zebrafish larvae are optically transparent upon hatching and this provides an opportunity for observations to be made within the living zebrafish larvae. This study aimed to take advantage of the optical transparency of zebrafish larvae to study the nitric oxide (NO) reducing effects of NDOs through the use of lipopolysaccharide (LPS) from Salmonella enterica serovar (ser.) Enteritidis (S. Enteritidis) to induce cardiac NO production. Prior to running the above experiment, an acute toxicity assay was conducted in order to determine the appropriate concentration of oligosaccharides to be used. The oligosaccharides tested consisted of oligosaccharides which were extracted from palm kernel cake with a degree of polymerization (DP) equal to or less than six (OligoPKC), commercial mannanoligosaccharide (MOS) and commercial fructooligosaccharide (FOS). Acute toxicity test results revealed that the OligoPKC has a LC50 of 488.1 μg/ml while both MOS and FOS were non-toxic up to 1,000 μg/ml. Results of the in vivo NO measurements revealed that all three NDOs were capable of significantly reducing NO levels in LPS stimulated zebrafish embryos. In summary, at 250 μg/ml, OligoPKC was comparable to MOS and better than FOS at lowering NO in LPS induced zebrafish larvae. However, at higher doses, OligoPKC appears toxic to zebrafish larvae. This implies that the therapeutic potential of OligoPKC is limited by its toxicity.
  12. Oskoueian E, Abdullah N, Ahmad S, Saad WZ, Omar AR, Ho YW
    Int J Mol Sci, 2011;12(9):5955-70.
    PMID: 22016638 DOI: 10.3390/ijms12095955
    Defatted Jatropha curcas L. (J. curcas) seed kernels contained a high percentage of crude protein (61.8%) and relatively little acid detergent fiber (4.8%) and neutral detergent fiber (9.7%). Spectrophotometric analysis of the methanolic extract showed the presence of phenolics, flavonoids and saponins with values of 3.9, 0.4 and 19.0 mg/g DM, respectively. High performance liquid chromatography (HPLC) analyses showed the presence of gallic acid and pyrogallol (phenolics), rutin and myricetin (flavonoids) and daidzein (isoflavonoid). The amount of phorbol esters in the methanolic extract estimated by HPLC was 3.0 ± 0.1 mg/g DM. Other metabolites detected by GC-MS include: 2-(hydroxymethyl)-2 nitro-1,3-propanediol, β-sitosterol, 2-furancarboxaldehyde, 5-(hydroxymethy) and acetic acid in the methanolic extract; 2-furancarboxaldehyde, 5-(hydroxymethy), acetic acid and furfural (2-furancarboxaldehyde) in the hot water extract. Methanolic and hot water extracts of kernel meal showed antimicrobial activity against both Gram positive and Gram negative pathogenic bacteria (inhibition range: 0-1.63 cm) at the concentrations of 1 and 1.5 mg/disc. Methanolic extract exhibited antioxidant activities that are higher than hot water extract and comparable to β-carotene. The extracts tended to scavenge the free radicals in the reduction of ferric ion (Fe(3+)) to ferrous ion (Fe(2+)). Cytotoxicity assay results indicated the potential of methanolic extract as a source of anticancer therapeutic agents toward breast cancer cells.
  13. Akram W, Hussein MS, Ahmad S, Mamat MN, Ismail NE
    Saudi Pharm J, 2015 Oct;23(5):499-503.
    PMID: 26594115 DOI: 10.1016/j.jsps.2015.01.011
    There is no instrument which collectively assesses the knowledge, attitude and perceived practice of asthma among community pharmacists. Therefore, this study aimed to validate the instrument which measured the knowledge, attitude and perceived practice of asthma among community pharmacists by producing empirical evidence of validity and reliability of the items using Rasch model (Bond & Fox software®) for dichotomous and polytomous data. This baseline study recruited 33 community pharmacists from Penang, Malaysia. The results showed that all PTMEA Corr were in positive values, where an item was able to distinguish between the ability of respondents. Based on the MNSQ infit and outfit range (0.60-1.40), out of 55 items, 2 items from the instrument were suggested to be removed. The findings indicated that the instrument fitted with Rasch measurement model and showed the acceptable reliability values of 0.88 and 0.83 and 0.79 for knowledge, attitude and perceived practice respectively.
  14. Ahmad SA, Shukor MY, Shamaan NA, Mac Cormack WP, Syed MA
    Biomed Res Int, 2013;2013:871941.
    PMID: 24381945 DOI: 10.1155/2013/871941
    A molybdenum-reducing bacterium from Antarctica has been isolated. The bacterium converts sodium molybdate or Mo⁶⁺ to molybdenum blue (Mo-blue). Electron donors such as glucose, sucrose, fructose, and lactose supported molybdate reduction. Ammonium sulphate was the best nitrogen source for molybdate reduction. Optimal conditions for molybdate reduction were between 30 and 50 mM molybdate, between 15 and 20°C, and initial pH between 6.5 and 7.5. The Mo-blue produced had a unique absorption spectrum with a peak maximum at 865 nm and a shoulder at 710 nm. Respiratory inhibitors such as antimycin A, sodium azide, potassium cyanide, and rotenone failed to inhibit the reducing activity. The Mo-reducing enzyme was partially purified using ion exchange and gel filtration chromatography. The partially purified enzyme showed optimal pH and temperature for activity at 6.0 and 20°C, respectively. Metal ions such as cadmium, chromium, copper, silver, lead, and mercury caused more than 95% inhibition of the molybdenum-reducing activity at 0.1 mM. The isolate was tentatively identified as Pseudomonas sp. strain DRY1 based on partial 16s rDNA molecular phylogenetic assessment and the Biolog microbial identification system. The characteristics of this strain would make it very useful in bioremediation works in the polar and temperate countries.
  15. Sultan MT, Butt MS, Karim R, Zia-Ul-Haq M, Batool R, Ahmad S, et al.
    PMID: 24511321 DOI: 10.1155/2014/826380
    In the recent era, diabetes mellitus has emerged as one of the significant threats to public health and this situation demands the attention of the researchers and allied stakeholders. Dietary regimens using functional and nutraceutical foods are gaining wide range of acceptance and some traditional medicinal plants are of considerable importance. The main objective of this instant study was to explore the antidiabetic potential of Nigella sativa fixed oil (NSFO) and essential oil (NSEO). Three experimental groups of rats received diets during the entire study duration, that is, D1 (control), D2 (NSFO: 4.0%), and D3 (NSEO: 0.30%). Experimental diets (NSFO & NSEO) modulated the lipid profile, while decreasing the antioxidant damage. However, production of free radicals, that is, MDA, and conjugated dienes increased by 59.00 and 33.63%, respectively, in control. On the contrary, NSFO and NSEO reduced the MDA levels by 11.54 and 26.86% and the conjugated dienes levels by 32.53 and 38.39%, respectively. N. sativa oils improved the health and showed some promising anti-diabetic results.
  16. Zu Nurain Ahmad S, Salleh WNW, Yusof N, Yusop MZM, Hamdan R, Ismail AF
    PMID: 38727970 DOI: 10.1007/s11356-024-33322-w
    Simple and efficient removal of Pb(II) ion from aqueous solution through adsorption has accelerated the development of many new composites to improve this popular method. In this study, the composites of graphene oxide (GO), zeolitic imidazolate framework-8 (ZIF-8), and magnetic materials were synthesized via coprecipitation method utilizing a different molar ratio between FeCl2 and FeCl3 of 1:0.5, 2:1, 3:1.5, and 4:2. The ZIF-8/GO was prepared via room temperature synthesis method prior to its further modification with magnetic materials for ease of separation. It was observed that the MZIF-8/GO2 of molar ratio 2:1 showed the best performance in adsorbing Pb(II) ion. As confirmed by FESEM image, it appeared to be ZIF-8 particles that have grown all over the GO platform and overlayed with Fe3O4 granular-shaped particles. The MZIF-8/GO2 successfully achieved 99% removal of Pb(II) within 10 min. The optimum values obtained for the initial concentration of Pb (II) were 100 mg/L, pH of 4 to 6, and adsorbent dosage used was 10 mg. The Langmuir isotherm and the pseudo-second-order kinetic model were deemed suitable to evaluate the adsorption of Pb(II) using MZIF-8/GO2. Results showed that MZIF-8GO2 achieved a maximum adsorption capacity of 625 mg/g of Pb(II) adsorption. All parent materials demonstrated a good synergistic effects, while exhibiting a significant contribution in providing active sites for Pb(II) adsorption. Therefore, this ternary composite of MZIF-8/GO2 is expected to be a promising adsorbent for Pb(II) adsorption from aqueous solution with an added value of ease of post phase separation using external magnetic field.
  17. Othman AR, Abdullah N, Ahmad S, Ismail IS, Zakaria MP
    PMID: 25652309 DOI: 10.1186/s12906-015-0528-4
    BACKGROUND: The Jatropha curcas plant or locally known as "Pokok Jarak" has been widely used in traditional medical applications. This plant is used to treat various conditions such as arthritis, gout, jaundice, wound and inflammation. However, the nature of compounds involved has not been well documented. Hence, this study was conducted to investigate the anti-inflammatory activity of different parts of J. curcas plant and to identify the active compounds involved.
    METHODS: In this study, methanol (80%) extraction of four different parts (leaves, fruits, stem and root) of J. curcas plant was carried out. Phenolic content of each part was determined by using Folin-Ciocalteau reagent. Gallic acid was used as the phenol standard. Each plant part was screened for anti-inflammatory activity using cultured macrophage RAW 264.7 cells. The active plant part was then partitioned with hexane, chloroform, ethyl acetate and water. Each partition was again screened for anti-inflammatory activity. The active partition was then fractionated using an open column chromatography system. Single spots isolated from column chromatography were assayed for anti-inflammatory and cytotoxicity activities. Spots that showed activity were subjected to gas chromatography mass spectrophotometry (GC-MS) analysis for identification of active metabolites.
    RESULTS: The hexane partition from root extract showed the highest anti-inflammatory activity. However, it also showed high cytotoxicity towards RAW 264.7 cells at 1 mg/mL. Fractionation process using column chromatography showed five spots. Two spots labeled as H-4 and H-5 possessed anti-inflammatory activity, without cytotoxicity activity. Analysis of both spots by GC-MS showed the presence of hexadecanoic acid methyl ester, octadecanoic acid methyl ester and octadecanoic acid.
    CONCLUSION: This finding suggests that hexadecanoic acid methyl ester, octadecanoic acid methyl ester and octadecanoic acid could be responsible for the anti-inflammatory activity of the J. curcas root extract.
  18. Fakhlaei R, Selamat J, Abdull Razis AF, Sukor R, Ahmad S, Khatib A, et al.
    Chemosphere, 2024 May;356:141736.
    PMID: 38554873 DOI: 10.1016/j.chemosphere.2024.141736
    Since ancient times, honey has been used for medical purposes and the treatment of various disorders. As a high-quality food product, the honey industry is prone to fraud and adulteration. Moreover, limited experimental studies have investigated the impact of adulterated honey consumption using zebrafish as the animal model. The aims of this study were: (1) to calculate the lethal concentration (LC50) of acid-adulterated Apis mellifera honey on embryos, (2) to investigate the effect of pure and acid-adulterated A. mellifera honey on hatching rate (%) and heart rate of zebrafish (embryos and larvae), (3) to elucidate toxicology of selected adulterated honey based on lethal dose (LD50) using adult zebrafish and (4) to screen the metabolites profile of adulterated honey from blood serum of adult zebrafish. The result indicated the LC50 of 31.10 ± 1.63 (mg/ml) for pure A. mellifera honey, while acetic acid demonstrates the lowest LC50 (4.98 ± 0.06 mg/ml) among acid adulterants with the highest mortality rate at 96 hpf. The treatment of zebrafish embryos with adulterated A. mellifera honey significantly (p ≤ 0.05) increased the hatching rate (%) and decreased the heartbeat rate. Acute, prolong-acute, and sub-acute toxicology tests on adult zebrafish were conducted at a concentration of 7% w/w of acid adulterants. Furthermore, the blood serum metabolite profile of adulterated-honey-treated zebrafish was screened by LC-MS/MS analysis and three endogenous metabolites have been revealed: (1) Xanthotoxol or 8-Hydroxypsoralen, (2) 16-Oxoandrostenediol, and (3) 3,5-Dicaffeoyl-4-succinoylquinic acid. These results prove that employed honey adulterants cause mortality that contributes to higher toxicity. Moreover, this study introduces the zebrafish toxicity test as a new promising standard technique for the potential toxicity assessment of acid-adulterated honey in this study and hazardous food adulterants for future studies.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links