Displaying publications 1 - 20 of 79 in total

  1. Tran TV, Nguyen DTC, Nguyen TTT, Nguyen DH, Alhassan M, Jalil AA, et al.
    Sci Total Environ, 2023 Jan 15;856(Pt 1):158817.
    PMID: 36116641 DOI: 10.1016/j.scitotenv.2022.158817
    Each year, nearly 30 million tons of pineapple fruit are harvested for food and drinking industries, along with the release of a huge amount of pineapple wastes. Without the proper treatment, pineapple wastes can cause adverse impacts on the environment, calling for new technologies to convert them into valuable products. Here, we review the production and application of adsorbents derived from pineapple wastes. The thermal processing or chemical modification improved the surface chemistry and porosity of these adsorbents. The specific surface areas of the pineapple wastes-based adsorbents were in range from 4.2 to at 522.9 m2·g-1. Almost adsorption systems followed the pseudo second order kinetic model, and Langmuir isotherm model. The adsorption mechanism was found with the major role of electrostatic attraction, complexation, chelation, and ion exchange. The pineapple wastes based adsorbents could be easily regenerated. We suggest the potential of the pineapple wastes towards circular economy.
    Matched MeSH terms: Ananas*
  2. Lim Kim Choo LN, Ahmed OH
    ScientificWorldJournal, 2014;2014:906021.
    PMID: 25215335 DOI: 10.1155/2014/906021
    Pineapples (Ananas comosus (L.) Merr.) cultivation on drained peats could affect the release of carbon dioxide (CO2) into the atmosphere and also the leaching of dissolved organic carbon (DOC). Carbon dioxide emission needs to be partitioned before deciding on whether cultivated peat is net sink or net source of carbon. Partitioning of CO2 emission into root respiration, microbial respiration, and oxidative peat decomposition was achieved using a lysimeter experiment with three treatments: peat soil cultivated with pineapple, bare peat soil, and bare peat soil fumigated with chloroform. Drainage water leached from cultivated peat and bare peat soil was also analyzed for DOC. On a yearly basis, CO2 emissions were higher under bare peat (218.8 t CO2 ha/yr) than under bare peat treated with chloroform (205 t CO2 ha/yr), and they were the lowest (179.6 t CO2 ha/yr) under cultivated peat. Decreasing CO2 emissions under pineapple were attributed to the positive effects of photosynthesis and soil autotrophic activities. An average 235.7 mg/L loss of DOC under bare peat suggests rapid decline of peat organic carbon through heterotrophic respiration and peat decomposition. Soil CO2 emission depended on moderate temperature fluctuations, but it was not affected by soil moisture.
    Matched MeSH terms: Ananas/chemistry*
  3. Mohd Ali M, Hashim N, Abd Aziz S, Lasekan O
    Food Res Int, 2020 11;137:109675.
    PMID: 33233252 DOI: 10.1016/j.foodres.2020.109675
    Pineapple (Ananas comosus) is a tropical fruit that is highly relished for its unique aroma and sweet taste. It is renowned as a flavourful fruit since it contains a number of volatile compounds in small amounts and complex mixtures. Pineapple is also a rich source of minerals and vitamins that offer a number of health benefits. Ranked third behind banana and citrus, the demand for pineapple has greatly increased within the international market. The growth of the pineapple industry in the utilisation of pineapple food-based processing products as well as waste processing has progressed rapidly worldwide. This review discusses the nutritional values, physicochemical composition and volatile compounds, as well as health benefits of pineapples. Pineapple contains considerable amounts of bioactive compounds, dietary fiber, minerals, and nutrients. In addition, pineapple has been proven to have various health benefits including anti-inflammatory, antioxidant activity, monitoring nervous system function, and healing bowel movement. The potential of food products and waste processing of pineapples are also highlighted. The future perspectives and challenges with regard to the potential uses of pineapple are critically addressed. From the review, it is proven that pineapples have various health benefits and are a potential breakthrough in the agricultural and food industries.
    Matched MeSH terms: Ananas*
  4. Nasoha NZ, Luthfi AAI, Roslan MF, Hariz HB, Bukhari NA, Manaf SFA
    Sci Rep, 2023 Nov 07;13(1):19284.
    PMID: 37935748 DOI: 10.1038/s41598-023-46061-8
    This study explores utilizing pineapple peel (PP) hydrolysate as a promising carbon source for xylitol production, covering scopes from the pre-treatment to the fermentation process. The highest xylose concentration achieved was around 20 g/L via mild acid hydrolysis (5% nitric acid, 105 °C, 20-min residence time) with a solid loading of 10%. Two sets fermentability experiments were carried out of varying pH levels in synthetic media that includes acetic acid as the main inhibitors and hydrolysate supplemented with diverse nitrogen source. The results revealed that pH 7 exhibited the highest xylitol production, yielding 0.35 g/g. Furthermore, urea was found to be a highly promising and cost-effective substitute for yeast extract, as it yielded a comparable xylitol production of 0.31 g/g with marginal difference of only 0.01 g/g compared to yeast extract further highlights the viability of urea as the preferred option for reducing xylitol production cost. The absence of a significant difference between the synthetic media and hydrolysate, with only a marginal variance of 0.35 to 0.32 g/g, implies that acetic acid is indeed the primary constraint in xylitol production using PP hydrolysate. The study sheds light on PP biomass's potential for xylitol production, aligning economic benefits with environmental sustainability and waste management.
    Matched MeSH terms: Ananas*
  5. De Silva AE, Kadir MA, Aziz MA, Kadzimin S
    ScientificWorldJournal, 2006 Feb 17;6:169-75.
    PMID: 16493521
    Differential effect of plant growth regulators and additives in proliferation of 18-month-old calli of Ananas comosus L. cv. Moris were assessed in vitro. The proliferation of callus relied on the growth regulators and additives. Of the different auxins supplemented in the Murashige and Skoog (MS) media, 32.22 microM alpha-naphthaleneacetic acid (NAA) gave the highest mean fresh weight of callus (46.817 g). Medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) was inferior to NAA, while b-naphthoxy acetic acid (BNOA) and p-chlorophenoxy acetic acid (4-CPA) were not effective in proliferating 18-months old callus. Addition of casein hydrolysate and coconut water to NAA supplemented medium showed better proliferation and production of callus. However, in terms of callus production, NAA at 32.22 microM was economically better.
    Matched MeSH terms: Ananas/drug effects*; Ananas/growth & development*
  6. Redwan RM, Saidin A, Kumar SV
    BMC Plant Biol, 2015;15:196.
    PMID: 26264372 DOI: 10.1186/s12870-015-0587-1
    Pineapple (Ananas comosus var. comosus) is known as the king of fruits for its crown and is the third most important tropical fruit after banana and citrus. The plant, which is indigenous to South America, is the most important species in the Bromeliaceae family and is largely traded for fresh fruit consumption. Here, we report the complete chloroplast sequence of the MD-2 pineapple that was sequenced using the PacBio sequencing technology.
    Matched MeSH terms: Ananas/genetics*; Ananas/metabolism
  7. Ramli AN, Aznan TN, Illias RM
    J Sci Food Agric, 2017 Mar;97(5):1386-1395.
    PMID: 27790704 DOI: 10.1002/jsfa.8122
    Bromelain is a mixture of proteolytic enzymes found in pineapple (Ananas comosus) plants. It can be found in several parts of the pineapple plant, including the stem, fruit, leaves and peel. High demand for bromelain has resulted in gradual increases in bromelain production. These increases have led to the need for a bromelain production strategy that yields more purified bromelain at a lower cost and with fewer production steps. Previously, bromelain was purified by conventional centrifugation, ultrafiltration and lyophilisation. Recently, the development of more modern purification techniques such as gel filtration, ion exchange chromatography, affinity chromatography, aqueous two-phase extraction and reverse micelle chromatography has resulted in increased industrial bromelain production worldwide. In addition, recombinant DNA technology has emerged as an alternative strategy for producing large amounts of ultrapure bromelain. An up-to-date compilation of data regarding the commercialisation of bromelain in the clinical, pharmaceutical and industrial fields is provided in this review. © 2016 Society of Chemical Industry.
    Matched MeSH terms: Ananas/enzymology; Ananas/chemistry
  8. Arshad ZI, Amid A, Yusof F, Jaswir I, Ahmad K, Loke SP
    Appl Microbiol Biotechnol, 2014 Sep;98(17):7283-97.
    PMID: 24965557 DOI: 10.1007/s00253-014-5889-y
    This review highlights the use of bromelain in various applications with up-to-date literature on the purification of bromelain from pineapple fruit and waste such as peel, core, crown, and leaves. Bromelain, a cysteine protease, has been exploited commercially in many applications in the food, beverage, tenderization, cosmetic, pharmaceutical, and textile industries. Researchers worldwide have been directing their interest to purification strategies by applying conventional and modern approaches, such as manipulating the pH, affinity, hydrophobicity, and temperature conditions in accord with the unique properties of bromelain. The amount of downstream processing will depend on its intended application in industries. The breakthrough of recombinant DNA technology has facilitated the large-scale production and purification of recombinant bromelain for novel applications in the future.
    Matched MeSH terms: Ananas/enzymology*
  9. Nuid M, Aris A, Krishnen R, Chelliapan S, Muda K
    J Environ Manage, 2023 Oct 15;344:118501.
    PMID: 37418913 DOI: 10.1016/j.jenvman.2023.118501
    This study was to develop biogranules using a sequencing batch reactor (SBR) and to evaluate the effect of pineapple wastewater (PW) as a co-substrate for treating real textile wastewater (RTW). The biogranular system cycle was 24 h (2 stages of phase), with an anaerobic phase (17.8 h) followed by an aerobic phase (5.8 h) for every stage of the phase. The concentration of pineapple wastewater was the main factor studied in influencing COD and color removal efficiency. Pineapple wastewater with different concentrations (7, 5, 4, 3, and 0% v/v) makes a total volume of 3 L and causes the OLRs to vary from 2.90 to 0.23 kg COD/m3day. The system achieved 55% of average color removal and 88% of average COD removal at 7%v/v PW concentration during treatment. With the addition of PW, the removal increased significantly. The experiment on the treatment of RTW without any added nutrients proved the importance of co-substrate in dye degradation.
    Matched MeSH terms: Ananas*
  10. Hamad AM, Taha RM
    Pak J Biol Sci, 2008 Feb 01;11(3):386-91.
    PMID: 18817160
    Seven different hormone treatments, namely 6-benzylaminopurine (BAP) at 2, 3 mg L(-1) was applied singly and in combination with Indole Acetic Acid (IAA) at 0.18, 0.8 and 1.8 mg L(-l), BAP at 3.3 mg L(-l) in combination with IAA at 1.8 and 3.3 mg L(-l) and triple combination of BAP at 2.3, IAA at 1.8 and Gibberellic acid (GA3) at 1.0 mg L(-1) were tested, over four different incubation periods of 30, 45, 60 and 75 days, for their effect in the proliferation and growth of Smooth cayenne pineapple shoot-tip culture. Combined application of BAP at 3.3 and IAA at 1.8 mg L(-1) induced the highest proliferation of 19 shoots/explant and the highest total of 121 and 125 shoots over 4 cycles of multiplication. Raising the IAA to 3.3 mg L(-1) resulted in the lowest proliferation and stunted shoots. Incorporation of GA3 improved the shoot length but caused drastic reduction in proliferation. The other treatments showed an intermediate effect.
    Matched MeSH terms: Ananas/growth & development*
  11. Shahril Anuar Bahari, Mohd Khairi Yahya, Masitah Abu Kassim, Khairul Safuan Muhammad, Rahimi Baharom
    The electrical resistivity and flexural strength of plastic composites reinforced with pineapple leaf particles (PCPLP) is presented. PCPLP were produced using different plastic materials; Polyethylene (PE) and Polypropylene (PP), and different plastic pineapple leaf particle ratios; 50:50 and 70:30. The PCPLP were tested and evaluated with respect to electrical resistivity and flexural strength according to ASTM D257 and D790, respectively. The results indicate that PCPLP made from PP exhibits better electrical resistance than PE, which may be attributed to the better frequency insulation behaviour ofPP. PCPLP using the higher ratio of 70:30 also exhibited better electrical resistance than the lower 50:50 ratio. Cellulose materials inherently influence the electrical resistance of plastic composites, due to their natural propensity to absorb moisture. The PCPLP produced using a ratio of 50:50 for both PP and PE composites exhibited better MOE results than the 70:30 composites, however the converse is true with respect to the MOR. MOE of PCPLP was increased with increasing pineapple leaf particles content due to the greater matrix stiffness of this natural particle with respect to plastic matrix. However, high percentage offiller particles in the matrix (70:30 ratio) has reduced the toughness in the composite structure due to the lost ofphysical contact between high accumulated particles.
    Matched MeSH terms: Ananas
  12. Polunin I
    Nature, 1951;167:442.
    LABOURERS in factories in South Malaya who cut up pineapples by hand for canning invariably show an abnormality of those parts of the body which are exposed to slight pressure and pineapple juice, notably the palmar surfaces of the fingertips and the periphery of the palms. At the beginning of the canning season, the left hand, which comes more into contact with the fruit than the knife-holding hand, becomes sore and small superficial raw areas on the fingertips are often seen. Within several days, however, these heal, and the skin ceases to be sore. The labourers state that this tolerance to the pineapple juice is due to the development of an abnormality of the skin, which in the affected area becomes bluish-white and so smooth that fingerprints may be completely lost. Deep cracks are sometimes seen in the region of the skin creases. These often stay raw and bleeding for a long time, and show no clinical signs of infection, presumably because of removal of dead tissues by enzymatic action.
    Matched MeSH terms: Ananas
  13. Low YL, Pui LP
    Acta Sci Pol Technol Aliment, 2020 7 1;19(2):207-218.
    PMID: 32600017 DOI: 10.17306/J.AFS.0752
    BACKGROUND: The bite-sized jelly sphere with a gelatinous exterior and fruit puree interior is a type of innovative fruit-based dessert. This study aimed to produce jelly spheres with a gelatinous exterior and mangopineapple puree interior by using frozen reverse spherification.

    METHODS: A full factorial design (23) was applied to study the effects of mango-pineapple ratio (x1), immersion time in sugar solution (x2), and concentration of sugar solution (x3) in the production  of mango-pineapple jelly spheres using frozen reverse spherification. The responses studied were the physicochemical properties (color, total soluble solids, and texture) and sensory evaluation of mango-pineapple jelly spheres.

    RESULTS: Mango-pineapple ratio had a positive effect on a* and b* while having a negative effect L* value on the jelly sphere. Total soluble solids of jelly spheres were influenced by both immersion time in sugar solution and concentration of sugar solution. Immersion time in sugar solution had a positive effect on the peak force of the compression cycle and deformation at peak load while having a negative effect on the total soluble solid of jelly spheres. On the other hand, the concentration of sugar solution had a positive effect on the sensory evaluation in terms of flavor, texture, and overall acceptability. The desirability function approach was used to optimize the factors, and an overall desirability of 0.89 for all responses was achieved with 1.28:1 mango-pineapple ratio, 30 mins immersion time in sugar solution, and 22°Brix sugar solution. A proximate analysis of the optimized mango-pineapple jelly spheres had an energy content of 73.18 kcal/100 g and showed nutrient values of 81.11% moisture, 0.10% ash, 0.46% protein, 0% fat, 0.97% total dietary fiber, and 17.35% digestible carbohydrate.

    CONCLUSIONS: The development of the optimal mango-pineapple jelly sphere allows food producers to produce a dessert that is low in calories, with a good appearance and consumer acceptability.

    Matched MeSH terms: Ananas*
  14. Pang WC, Ramli ANM, Hamid AAA
    J Mol Model, 2020 May 16;26(6):142.
    PMID: 32417971 DOI: 10.1007/s00894-020-04398-1
    Fruit bromelain is a cysteine protease accumulated in pineapple fruits. This proteolytic enzyme has received high demand for industrial and therapeutic applications. In this study, fruit bromelain sequences QIM61759, QIM61760 and QIM61761 were retrieved from the National Center for Biotechnology Information (NCBI) Genbank Database. The tertiary structure of fruit bromelain QIM61759, QIM61760 and QIM61761 was generated by using MODELLER. The result revealed that the local stereochemical quality of the generated models was improved by using multiple templates during modelling process. Moreover, by comparing with the available papain model, structural analysis provides an insight on how pro-peptide functions as a scaffold in fruit bromelain folding and contributing to inactivation of mature protein. The structural analysis also disclosed the similarities and differences between these models. Lastly, thermal stability of fruit bromelain was studied. Molecular dynamics simulation of fruit bromelain structures at several selected temperatures demonstrated how fruit bromelain responds to elevation of temperature.
    Matched MeSH terms: Ananas/enzymology*
  15. Ramli ANM, Manas NHA, Hamid AAA, Hamid HA, Illias RM
    Food Chem, 2018 Nov 15;266:183-191.
    PMID: 30381175 DOI: 10.1016/j.foodchem.2018.05.125
    Cysteine proteases in pineapple (Ananas comosus) plants are phytotherapeutical agents that demonstrate anti-edematous, anti-inflammatory, anti-thrombotic and fibrinolytic activities. Bromelain has been identified as an active component and as a major protease of A. comosus. Bromelain has gained wide acceptance and compliance as a phytotherapeutical drug. The proteolytic fraction of pineapple stem is termed stem bromelain, while the one presents in the fruit is known as fruit bromelain. The amino acid sequence and domain analysis of the fruit and stem bromelains demonstrated several differences and similarities of these cysteine protease family members. In addition, analysis of the modelled fruit (BAA21848) and stem (CAA08861) bromelains revealed the presence of unique properties of the predicted structures. Sequence analysis and structural prediction of stem and fruit bromelains of A. comosus along with the comparison of both structures provides a new insight on their distinct properties for industrial application.
    Matched MeSH terms: Ananas/enzymology*
  16. Zulkifle AF, Siti Soraya AR, Hamzaini AH
    Med J Malaysia, 2023 Nov;78(6):774-779.
    PMID: 38031220
    INTRODUCTION: We aimed to compare the degree of bowel distension and image quality between pineapple juice and different mannitol concentrations, as well as patients' acceptance and side effects of these different magnetic resonant enterography (MRE) oral contrast agents.

    MATERIALS AND METHODS: Seventy-five participants underwent MRE as an initial investigation or follow-up for inflammatory bowel disease. A systematic sampling method was used to divide the participants into three different groups: group 1 received 6.7% mannitol concentration, group 2 received 3.3% mannitol concentration and group 3 received pineapple juice as an oral contrast agent during their MRE examination. The degree of bowel distension on MRE images was assessed by a radiologist by measuring the bowel diameter from inner wall to inner wall at specified levels, while qualitative analysis was evaluated based on the presence of artefacts. All patients were asked to score their acceptance of the oral contrast and were asked about side effects such as diarrhoea, abdominal discomfort and vomiting.

    RESULTS: All patients were able to completely ingest 1.5L of oral contrast. The mean diameter of bowel distension was 2.1cm in patients who received 6.7% mannitol concentration, 2.0cm in patients who received 3.3% mannitol concentration and 1.6 cm in patients who received pineapple juice. Twothirds of patients who received 6.7% mannitol and 3.3% mannitol solutions had good-quality MRE images, but 68% of patients who received pineapple juice had poor-quality MRE images. Twenty-four patients (96%) who received pineapple juice rated it as slightly acceptable and acceptable but only 12 patients (48%) who received 6.7% mannitol solution rated it as slightly acceptable and acceptable. Eighty-eight percent of patients who received 6.7% mannitol solution experienced at least one form of side effect as compared to 44% of patients who received 3.3% mannitol solution and 18% of patients who received pineapple juice.

    CONCLUSION: Optimum small bowel distension and good image quality can be achieved using 3.3% mannitol concentration as an oral contrast agent. Increase in mannitol concentration does not result in significant improvement of small bowel distension or image quality but is instead related to poorer patient acceptance and increased side effects. Pineapple juice is more palatable than mannitol and produces satisfactory small bowel distension. However, the small bowel distension is less uniform when using pineapple juice with a considerable presence of artefacts. Mannitol, 3.3% concentration, is therefore recommended as an endoluminal contrast agent for bowel in MRE.

    Matched MeSH terms: Ananas*
  17. Nur Lisa Farhana Mohamad, Fathilah Binti Ali, Azlin Suhaida Azmi, Barre, Mohamed Soleiman, Hazleen Anuar
    The concern about our dependency on non-renewable resources and overwhelming environmental issues such as pollution caused by non-degradable packaging materials has prompted researchers to come up with alternatives to solve this problem. Thermoplastic polylactic acid (PLA) has been gaining interest due to its versatility and easy processability, thus this study was carried out to find out the properties of PLA reinforced with pineapple fibers. However, surface of the natural fibers need to be treated for better properties enhancement in the polymer matrices. Considering this, fibers were treated with 10% (w/v) concentration of potassium hydroxide (KOH) and then continued for mixing with PLA at a fixed ratio of plasticizer by using internal mixer, and then the composites were prepared into sheet via hot press. Characterization for the mechanical and morphological was conducted by using tensile testing and scanning electron microscopy, respectively. After the analysis, it is found that the surface treated pineapple fiber composite showed better elongation at break compared to untreated fiber composite. The enhance properties of PLA nanocomposites has potential to be used in various packaging materials.
    Matched MeSH terms: Ananas
    Pineapple is one of the most important commercial fruit crops served in fresh-cut form which is convenientfor the consumers. However, fresh-cut pineapple induces the activity of phenolic compounds which triggers the generation of brown or dark pigments. Browning incidence (BI) directly influences the fruit’s acceptability and marketability. Therefore, different exposure times (5mins, 10mins, 15mins and 20mins)and typesof LED lights (white, red and blue) were applied on fresh-cut pineapple stored at 5oC storage for twelve days to reduce BI. A significant interaction between the two factors was recorded in lightness coefficient, chroma, total phenolic and ascorbic acid (AA)contents. Regardless of exposure times, all types of LED lights, mainly the blue light, succeeded in delaying BI in fresh-cut pineapple. In conclusion, blue light had a tendency todelay BI andmaintaintheother postharvest quality attributes of fresh-cut pineapple.
    Matched MeSH terms: Ananas
  19. Chia, S. L., Rosnah, S., Noranizan, M. A., Wan Ramli, W. D.
    The effect of storage time on the quality of ultraviolet-irradiated and thermally pasteurised pineapple juice was evaluated. The juices were irradiated with ultraviolet light (UV-C) at wavelength 254 nm (53.42 mJ/cm2, 4.918 s), thermally pasteurised at 800C for 10 minutes and stored at 40C for 13 weeks. There were significant changes in the total soluble solids, pH, titratable acidity and turbidity of UV-irradiated juice during storage, whereas for the same quality attributes of thermally pasteurised juice remained stable throughout the storage time. There were no significant changes in total phenolics for both treatments throughout the storage period. Other quality parameters (ascorbic acid, colour L, hue angle and chroma) were significantly affected by the storage time. Regarding the microbiological analysis, the total plate counts and yeast and mould counts of the UV-irradiated juice increased gradually throughout the 13 weeks of storage while these parameters remained unchanged in the thermally pasteurised juice with almost no microorganism growth. UV-irradiated pineapple juice preserved better quality attributes (TSS, pH, titratable acidity, ascorbic acid, turbidity, total phenolic, L (lightness), hue angle and chroma) than the thermal pasteurised juice during the storage time. Hence, UV irradiation has great potential as an alternative technology to thermal pasteurisation in producing products of high nutritive values.
    Matched MeSH terms: Ananas
  20. Rosnah Shamsudin, Wan Ramli Wan Daud, Mohd Sobri Takrif, Osman Hassan
    The physico-mechanical properties data of fruits are important in the design of various handling, packing, and storage and transportation system. The physical-mechanical properties of pineapple fruit from the Josapine variety, namely the weight of the fruit (with and without peel), pulp to peel ratio, diameter of the whole fruit (with and without peel), at three different positions along the longitudinal axis of the fruit, length of the fruit (with and without peel) and the length of crown were studied using the standard method at seven stages of maturity during storage at 25°C and 52% (RH). The effect of fruit maturity on the firmness of each fruit at three different locations was measured using a cylindrical die of 6 mm in diameter with the Instron Universal Testing Machine. The results indicated that the average total weight of a single fruit is 886.86 ± 49.67 g. The average pulp to peel ratio is 1.91. The average diameter (with and without peel) was 86.83 ± 5.24 mm and 80.95 ± 4.15 mm (top section), 100.77 ± 3.84 mm and 90.19 ± 3.73 mm (middle section) and 97.17 ± 3.49 mm and 73.30 ± 5.11 mm (bottom section), respectively. The average length of the fruit (with and without peel) was 126.65 mm and 113.64 mm, respectively. The average length of crown was 89.13 mm. The firmness of the fruits was found to decrease with the stage of maturity. These data are important in determining the optimum stage of maturity for fruit processing.
    Matched MeSH terms: Ananas
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links