This study describes the hydrothermal synthesis of a novel carbon/palmitic acid (PA) microencapsulated phase change material (MEPCM). The field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM) images confirm that spherical capsules of uniform size were formed with a mean diameter of 6.42 μm. The melting and freezing temperature were found to be slightly lower than those of pure PA with little undercooling. The composite retained 75% of the latent heat of pure PA. Thermal stability of the MEPCM was found to be better than that of pure PA. The thermal conductivity of MEPCM was increased by as much as 41% at 30°C. Due to its good thermal properties and chemical and mechanical stability, the carbon/PA MEPCM displays a good potential for thermal energy storage systems.
Recurrent aphthous ulcers of the mouth are difficult to treat because of no known definite aetiology. This paper presents the use of lactic acid bacteria thought to modulate the host immune response to affect improvements in the disease. Twenty-five patients with the disease were treated with 6 lactic bacteria capsules (in the form of OMX capsules) daily for a period of six months, and their responses were evaluated. Seventeen patients (73.9%) became free of the disease six months later, while 6 (26.1 %) experienced very dramatic improvements. Two patients were lost to follow-up. It is concluded that lactic acid bacteria is beneficial in the treatment of recurrent aphthous ulcers of the mouth.
In this study, supercritical carbon dioxide solution-enhanced dispersion (SEDS) was used to encapsulate hemp seed oil (HSO) within matrices of hemp seed protein isolate (HPI), pea protein (PPI) and soy protein (SPI) (0.5 % w/v) in complex with alginate (AL) (0.01 % w/v). The effects of different pH levels (3-9), NaCl concentrations (0-200 mmol/L) and simulated gastrointestinal conditions on HSO release and digestion patterns were analyzed. The findings revealed that SPI/AL microcapsules effectively maintained structural integrity and controlled oil release across diverse pH levels and salt concentrations. During gastrointestinal phases, minimal oil release was observed during oral digestion (<25 % for all samples), while significant (P
Phosphate solubilizing bacteria (PSBs) shows high potential to be used for lead passivation in sediments due to the abilities of releasing phosphate and the subsequent formation of insoluble Pb-phosphate compounds. In this research, microbial capsules implemented with sodium alginate and CaCl2, containing Leclercia adecarboxylata L15 (a lead resistant PSB) and Ca3(PO4)2, were developed and the performance on lead passivation under different conditions was examined. The optimal concentrations of sodium alginate and CaCl2 for formulating the capsules were determined to be 0.3% and 10%, respectively. The removal efficiency of Pb2+ by capsules containing L15 and Ca3(PO4)2 was up to 98% with a capsule dosage of 2%, initial Pb2+ concentration of 1mM and pH of 3.0, which was better than that of free L15 (18%) and capsules containing only L15 (34%). Lead was immobilized via the formation of Pb5(PO4)3Cl on the surface and Pb3(PO4)2 in the interior of the capsules. The simulated sediment remediation experiments showed that the acid soluble fraction of lead reduced from 28% to 14% and transformed into more stable fractions after 10 days. The experiment results indicated that PSBs capsules coupled with phosphate materials have a great promise for application in remediation of lead contaminated sediments.
The restoration of mechanical properties is desired for creating the self-healing coatings with no corrosion capabilities. The encapsulation of epoxy resins is limited by various factors in urea and melamine formaldehyde microcapsules. An improved method was developed, where epoxy resin was encapsulated by individual wrapping of poly(melamine-formaldehyde) and poly(urea-formaldehyde) shell around emulsified epoxy droplets via oil-in-water emulsion polymerization method. The synthesized materials were characterized analytically. The curing of the epoxy was achieved by adding the [Ni/Co(2-MI)6].2NO3 as a latent hardener and iron acetylacetonate [Fe(acac)3] as a latent accelerator. Isothermal and non-isothermal differential scanning calorimetric analysis revealed lower curing temperature (Tonset = 116 °C) and lower activation energies (Ea ≈ 69-75 kJ/mol). The addition of microcapsules and complexes did not adversely alter the flexural strength and flexural modulus of the epoxy coatings. The adhesion strength of neat coating decreased from 6310.8 ± 31 to 4720.9 ± 60 kPa and percent healing increased from 50.83 to 67.45% in the presence of acetylacetonate complex at 10 wt% of microcapsules.
The Drug Control Authority (DCA) of Malaysia implemented the phase three registration of traditional medicines on 1 January, 1992. A total of 100 products in various pharmaceutical dosage forms of a herbal preparation, containing Eugenia dyeriana, either single or combined preparations (more than one medicinal plant), were analyzed for the presence of lead contamination, using atomic absorption spectrophotometry. These samples were bought from different commercial sources in the Malaysian market, after performing a simple random sampling. Results showed that 22% of the above products failed to comply with the quality requirement for traditional medicines in Malaysia. Although this study showed that 78% of the products fully complied with the quality requirement for traditional medicines in Malaysia pertaining to lead, however, they cannot be assumed safe from lead contamination because of batch-to-batch inconsistency.
Although the general pharmacokinetics of cephalexin is quite established up-to-date, however, no population-based study on Cephalexin pharmacokinetics profile in Malay population has been reported yet in the literature.
Poor quality and quantity of DNA extracted from gelatin and gelatin capsules often causes failure in the determination of animal species using PCR. Gelatin, which is mainly derived from porcine and bovine, has been a matter of concern among customers in order to fulfill religious obligation and safety precaution against several transmissible infectious diseases associated with bovine species. Thus, optimised DNA extraction from gelatin is very important for successful real-time PCR detection of gelatin species. In this work, the DNA extraction method was optimised in terms of lysis incubation period and inclusion of pre-treatment pH modification of samples.
Vaccine administration via the oral route is preferable to parenteral routes due to ease of administration. To date, most available oral vaccines comprises of live attenuated pathogens as oppose to peptide-based vaccines due to its low bioavailability within the gastrointestinal (GI) tract. Over the years, probiotic-based peptide delivery vehicles comprising of lactic acid bacteria such as Lactococcus lactis has emerged as an interesting alternative due to its generally recognized as safe (GRAS) status, a fully sequenced genome, transient gut colonization time, and is an efficient cellular factory for heterologous protein production. However, its survivability through the GI tract is low, thus better delivery approaches are being explored to improve its bioavailability. In this study, we employ the incorporation of a double coated mucoadhesive film consisting of sodium alginate and Lycoat RS 720 film as the inner coat. The formulated film exhibits good mechanical properties of tensile strength and percent elongation for manipulation and handling with an entrapment yield of 93.14±2.74%. The formulated mucoadhesive film is subsequently loaded into gelatin capsules with an outer enteric Eudragit L100-55 coating capable of a pH-dependent breakdown above pH 5.5 to protect against gastric digestion. The final product and unprotected controls were subjected to in vitro simulated gastrointestinal digestions to assess its survivability. The product demonstrated enhanced protection with an increase of 69.22±0.67% (gastric) and 40.61±8.23% (intestinal) survivability compared to unprotected controls after 6 hours of sequential digestion. This translates to a 3.5 fold increase in overall survivability. Owing to this, the proposed oral delivery system has shown promising potential as a live gastrointestinal vaccine delivery host. Further studies involving in vivo gastrointestinal survivability and mice immunization tests are currently being carried out to assess the efficacy of this novel oral delivery system in comparison to parenteral routes.
The present study is aimed to prepare κ-carrageenan microparticles for the encapsulation of model drug, coenzyme Q10 (CoQ10). A face-centered central composite design was employed to study the effects of three different formulation variables (κ-carrageenan, emulsifier, and oil). The powder yield was found inversely affected by the κ-carrageenan and oil concentration. The encapsulation efficiency was maximized in the region of the middle level κ-carrageenan concentration, the high level emulsifier concentration, and the low level oil concentration. The emulsifier concentration was the most influential variable on the particle size of powder. The optimal formulation was reported as 0.91% (w/v) κ-carrageenan concentration, 0.64% (w/v) emulsifier, and 1.0% (w/w) oil. Both differential scanning colorimeter and X-ray diffraction analyses proved that incorporation of CoQ10 into κ- carrageenan microcapsules resulted in amorphous powder with significantly (p<0.05) higher water solubility compared to pure CoQ10 and physical mixture in the crystalline form.
The study was conducted to detect the porcine DNA in pharmaceutical products in local market using polymerase chain reaction (PCR) and southern-hybridization on the biochip. A total of 113 (n=113) of hard (82 samples) and soft gel (31 samples) capsules from pharmaceutical products were purchased and tested for the presence of porcine DNA for Halal authentication. All capsules were gelatin-based purchased from local over the counter (OTC) markets. Of all samples tested, 37.2% (42/113) contained porcine DNA. While, none porcine DNA band was detected for 62.8% (71/113) of capsules tested. All samples which were positive toward porcine DNA were imported pharmaceutical products with none Halal logo. Results in the presence study demonstrated that the PCR techniques and southern-hybridization on the biochip is suitable tool for monitoring the Haram component in highly processed product of soft and hard capsule.
In mining process, the height of water flowing fractured zone is important significance to prevent mine of water and gas, in order to further research the failure characteristic of the overlying strata. Taking certain coal mine with 5.82 m mining height as the experimental face, by using the equipment which is sealed two ends by capsules in borehole, affused measurable water between the two capsules and borehole televiewer system, ground penetrating radar, microseismic monitoring system in underground coal mine, the height of water flowing fractured zone of fully-mechanized top caving are monitored, a numerical simulation experiment on the failure process was conducted, a similarity simulation experiment on the cracks evolution was conducted, at the same time, empirical formula of traditional was modified, The results showed that the height of caving and fractured zones were respectively 43.1 and 86.7 m in fully mechanized sub-level caving mining. The data difference of each test method of caving, fractured and water flowing fractured zones were respectively less than 4.5%, 7.1% and 9.0%. The degree of fracture development was low before mining, the number of fissures was obviously increased after mining, the degree of fracture development increased. The fractures cluster region mainly focuses near the coal wall. The fractures density distribution curves of overlying strata like sanke-shapes. The new and adapt to certain coal mine geological conditions empirical formula of water flowing fractured zone height is proposed.
Considering the health benefits of tocotrienols, continuous works have been done on the encapsulation and delivery of these compounds. In this study, we encapsulated tocotrienols in chitosan-alginate microcapsules and evaluated their release profile. Generally, these tocotrienols microcapsules (TM) displayed high thermal stability. When subjected to pH adjustments (pH 1-9), we observed that the release of tocotrienols was the highest (33.78 ± 0.18%) under basic conditions. The TM were also unstable against the effect of ionic strength, with a high release (70.73 ± 0.04%) of tocotrienols even at a low sodium chloride concentration (50 mM). As for the individual isomers, δ-tocotrienol was the most sensitive to pH and ionic strength. In contrast, β-/γ-tocotrienols were the most ionic-stable isomers but more responsive toward thermal treatment. Simulated gastrointestinal model showed that the chitosan-alginate-based TM could be used to retain tocotrienols in the gastric and subsequently release them in the intestines for possible absorption.
The present study aims to design a milk fat globule membrane (MFGM)-inspired structured membrane (phospholipid- and protein-rich) for microencapsulation of docosahexaenoic acid (DHA) oil. DHA-enriched oil emulsions were prepared using different ratios of sunflower phospholipid (SPL), proteins [whey protein concentrate (WPC), soy protein isolate (SPI), and sodium caseinate (SC)], and maltodextrin and spray-dried to obtain DHA microcapsules. The prepared DHA oil emulsions have nanosized particles. SPLs were found to affect the secondary structure of WPC, which resulted in increased exposure of the protein hydrophobic site and emulsion stability. SPL also reduced the surface tension and viscosity of the DHA oil emulsions. In vitro digestion of the spray-dried DHA microcapsules showed that they were able to effectively resist gastric proteolysis and protect their bioactivity en route to the intestine. The DHA microcapsules have a high lipid digestibility in the small intestine with a high DHA hydrolysis efficiency (74.3%), which is higher than that of commercial DHA microcapsules.
One hundred and fourteen strains of Pasteurella multocida were isolated from different domestic animals species (cattle, buffalo, sheep, goat, pig, rabbit, dog, cat), avian species (chicken, duck, turkey) and wild animals (deer, tiger, orang utan, marmoset). The serogroups of P. multocida were determined by both conventional capsular serotyping and a multiplex PCR assay targeting specific capsular genes. Based on the conventional serotyping method, the 114 strains of P. multocida were subtyped into 55 species-specific (untypeable strains) P. multocida, 15 serogroup A, 23 serogroup B and 21 serogroup D. Based on the multiplex PCR assay on the specific capsular genes associated with each serogroup, the 114 strains were further divided to 22 species-specific P. multocida (KMT1 - 460 bp), 53 serogroup A (A - 1,044 bp), 33 serogroup B (B - 760 bp) and 6 serogroup D (D - 657 bp). No serogroup E (511 bp) or F (851 bp) was detected among the Malaysian P. multocida. PCR-based typing was more discriminative and could further subtype the previously untypeable strains. Overall, there was a significant and positive correlation between both methods in serogrouping P. multocida (r = 0.7935; p<0.4893). Various serogroups of P. multocida were present among the livestock with 75% of the strains belonging to serogroups A or B. PCR serotyping was therefore a highly species-specific, sensitive and robust method for detection and differentiation of P. multocida serogroups compared to conventional serotyping. To the best of our knowledge, this is the first report from Malaysia of the application of a PCR to rapidly define the species-specific P. multocida and its serogroups as an important zoonotic pathogen in Malaysia.
Solution-enhanced dispersion by supercritical carbon dioxide (SEDS) and spray drying (SD) were used to microencapsulate red palm oil (RPO) to prolong the functionality of carotenes and vitamin E. The protective effects provided by SEDS and SD were evaluated in terms of the oxidative stability (65 °C for 35 days), fatty acid compositions, color change and degradation kinetics of carotenes and vitamin E (25 °C, 45 °C, 65 °C, and 85 °C for up to 198 days). SEDS microcapsules (SEDS-M) were the most oxidatively stable (total oxidation (Totox): 26.5), followed by SD microcapsules (SD-M) (34.9) and RPO (56.7). Degradation of carotenes and vitamin E fitted well a first-order kinetic model (average absolute relative deviation = 2-16%). SEDS-M offered better protection to vitamin E (Ea = 36 kJ/mol), whereas SD-M provided better protection for α + β carotene (Ea = 29 kJ/mol). Overall, encapsulation protected RPO during storage, with SEDS-microencapsulated RPO performing better than SD-microencapsulated RPO.
Capsule endoscopy (CE) is emerging as an important investigation in inflammatory bowel disease (IBD); common types include the standard small bowel CE and colon CE. More recently, the pan-enteric CE was developed to assess the large and small bowel in patients with Crohn's disease (CD). Emerging indications include noninvasive assessment for mucosal healing (both in the small bowel and the colon) and detection of postoperative recurrence in patients with CD. Given the increasing adoption, several CE scoring systems have been specifically developed for IBD. The greatest concern with performing CE, particularly in CD, is capsule retention, but this can be overcome by performing cross-sectional imaging such as magnetic resonance enterography and using patency capsules before performing the procedure. The development of software for automated detection of mucosal abnormalities typically seen in IBD may further increase its adoption.
Crack formation in concrete is one of the main reasons for concrete degradation. Calcium alginate capsules containing biological self-healing agents for cementitious materials were studied for the self-healing of cement paste and mortars through in vitro characterizations such as healing agent survivability and retention, material stability, and biomineralization, followed by in situ self-healing observation in pre-cracked cement paste and mortar specimens. Our results showed that bacterial spores fully survived the encapsulation process and would not leach out during cement mixing. Encapsulated bacteria precipitated CaCO3 when exposed to water, oxygen, and calcium under alkaline conditions by releasing CO32- ions into the cement environment. Capsule rupture is not required for the initiation of the healing process, but exposure to the right conditions are. After 56 days of wet-dry cycles, the capsules resulted in flexural strength regain as high as 39.6% for the cement mortar and 32.5% for the cement paste specimens. Full crack closure was observed at 28 days for cement mortars with the healing agents. The self-healing system acted as a biological CO32- pump that can keep the bio-agents retained, protected, and active for up to 56 days of wet-dry incubation. This promising self-healing strategy requires further research and optimization.
Encapsulating fish oil by spray drying with an adequate wall material was investigated to determine if stable powders containing emulsified fish-oil-droplets can be formed. In particular, the dextrose equivalent (DE) of maltodextrin (MD) affects the powder structure, surface-oil ratio, and oxidative stability of fish oil. The carrier solution was prepared using MD with different DEs (DE = 11, 19, and 25) and sodium caseinate as the wall material and the emulsifier, respectively. The percentage of microcapsules having a vacuole was 73, 39, and 38% for MD with DE = 11, 19, and 25, respectively. Peroxide values (PVs) were measured for the microcapsules incubated at 60 °C. The microcapsules prepared with MD of DE = 25 and 19 had lower PVs than those prepared with MD of DE = 11. The difference in PV can be ascribed to the difference in the surface-oil ratio of the spray-dried microcapsules.
Studies have shown an association between oxidative stress and alopecia. Patients with alopecia generally exhibit lower levels of antioxidants in their scalp area as well as a higher lipid peroxidation index. Tocotrienols belong to the vitamin E family and are known to be potent antioxidants. Hence, a study was conducted to investigate the effect of tocotrienol supplementation on hair growth in volunteers suffering from hair loss. Twenty one volunteers were randomly assigned to orally receive 100 mg of mixed tocotrienols daily while 17 volunteers were assigned to receive placebo capsule orally. The volunteers were monitored for the number of hairs in a pre-determined scalp area as well as the weight of 20 strands of 1 cm length hair clippings at 0 (before supplementation), 4 and 8 months. The number of hairs of the volunteers in the tocotrienol supplementation group increased significantly as compared to the placebo group, with the former recording a 34.5% increase at the end of the 8-month supplementation as compared to a 0.1% decrease for the latter. Nevertheless, the cumulative weight of 20 strands of hair clippings did not differ much from the baseline for both supplementation groups at the end of the study period. In conclusion, this trial demonstrated that supplementation with tocotrienol capsules increases hair number in volunteers suffering from hair loss as compared to the placebo group. This observed effect was most likely to be due to the antioxidant activity of tocotrienols that helped to reduce lipid peroxidation and oxidative stress in the scalp, which are reported to be associated with alopecia.