METHODS: Samples of leaves, stems, flowers and roots from E. hirta were tested for total phenolic content, and flavonoids content and in vitro antioxidant activity by diphenyl-1-picrylhydrazyl (DPPH) assay and reducing power was measured using cyanoferrate method.
RESULTS: The leaves extract exhibited a maximum DPPH scavenging activity of (72.96±0.78)% followed by the flowers, roots and stems whose scavenging activities were (52.45±0.66)%, (48.59±0.97)%, and (44.42±0.94)%, respectively. The standard butylated hydroxytoluene (BHT) was (75.13±0.75)%. The IC(50) for leaves, flowers, roots, stems and BHT were 0.803, 0.972, 0.989, 1.358 and 0.794 mg/mL, respectively. The reducing power of the leaves extract was comparable with that of ascorbic acid and found to be dose dependent. Leaves extract had the highest total phenolic content [(206.17±1.95) mg GAE/g], followed by flowers, roots and stems extracts which were (117.08±3.10) mg GAE/g, (83.15±1.19) mg GAE/g, and (65.70±1.72) mg GAE/g, respectively. On the other hand, total flavonoids content also from leave had the highest value [(37.970±0.003) mg CEQ/g], followed by flowers, roots and stems extracts which were (35.200±0.002) mg CEQ/g, (24.350±0.006) mg CEQ/g, and (24.120±0.004) mg CEQ/g, respectively. HPTLC bioautography analysis of phenolic and antioxidant substance revealed phenolic compounds. Phytochemical screening of E. hirta leaf extract revealed the presence of reducing sugars, terpenoids, alkaloids, steroids, tannins, flavanoids and phenolic compounds.
CONCLUSIONS: These results suggeste that E. hirta have strong antioxidant potential. Further study is necessary for isolation and characterization of the active antioxidant agents, which can be used to treat various oxidative stress-related diseases.
AIM OF THE STUDY: To investigate the effects of E. guineensis leaf on wound healing activity in rats.
METHODS: A phytochemical screening was done to determine the major phytochemicals in the extract. The antimicrobial activity of the extract was examined using the disk diffusion technique and broth dilution method. The wound healing activity of leaves of E. guineensiswas studied by incorporating the methanolic extract in yellow soft paraffin in concentration of 10% (w/w). Wound healing activity was studied by determining the percentage of wound closure, microbial examination of granulated skin tissue and histological analysis in the control and extract treated groups.
RESULTS: Phytochemical screening reveals the presence of tannins, alkaloids, steroids, saponins, terpenoids, and flavonoids in the extract. The extract showed significant activity against Candida albicans with an MIC value of 6.25 mg/mL. The results show that the E. guineensis extract has potent wound healing capacity, as evident from better wound closure, improved tissue regeneration at the wound site, and supporting histopathological parameters pertaining to wound healing. Assessment of granulation tissue every fourth day showed a significant reduction in microbial count.
CONCLUSIONS: E. guineensis accelerated wound healing in rats, thus supporting this traditional use.