Synthetic dyes used in the textile and paper industries pose a major threat to the environment. In the present research work, the adsorption efficiency of the natural adsorbent Strychnos potatorum Linn (Fam: Loganiaceae) seeds were examined against the reactive orange-M2R dye from aqueous solution by varying the process conditions such as contact time, pH, adsorbent dosage, and initial dye concentration on adsorption of anionic azo dye. This study compares different types of artificial neural networks which are feedforward artificial neural network (FANN) and nonlinear autoregressive exogenous (NARX) model to predict the efficiency of a cost-effective natural adsorbent Strychnos potatorum Linn seeds on removing reactive orange-M2R dye from aqueous solution. Twelve training algorithms of neural network were compared, and the prediction on the adsorption performance of anionic azo dye from aqueous solution using Strychnos potatonum Linn seeds was evaluated by using the root mean squared error (RMSE), mean absolute error (MAE), coefficient of determination (R2), and accuracy. For FANN model, Levenberg-Marquardt (LM) backpropagation with 19 hidden neurons was selected as the optimum FANN model, with R2 of 0.994 and accuracy of 87.20%, 98.21%, and 66.60% for training, testing, and validation datasets, respectively. For NARX model, LM with 8 hidden neurons was selected as the most suitable training algorithm, with R2 value of more than 0.99 and accuracy of 88.00%, 90.91%, and 75.00% for training, testing, and validation datasets, respectively. NARX model accurately predicted the adsorption of anionic azo dye from aqueous solution using Strychnos potatonum Linn seeds with better performance than FANN model.
The present study aimed to investigate the removal efficiency of cephalexin (CFX) by a novel Cu-Zn bionanocomposite biosynthesized in the secondary metabolic products of Aspergillus arenarioides EAN603 with pumpkin peels medium (CZ-BNC-APP). The optimization study was performed based on CFX concentrations (1, 10.5 and 20 ppm); CZ-BNC-APP dosage (10, 55 and 100 mg/L); time (10, 55 and 100 min), temperature (20, 32.5 and 45 °C). The artificial neural network (ANN) model was used to understand the CFX behavior for the factors affecting removal process. The CZ-BNC-APP showed an irregular shape with porous structure and size between 20 and 80 nm. The FTIR detected CC, C-O and OH groups. ANN model revealed that CZ-BNC-APP dosage exhibited the vital role in the removal process, while the removal process having a thermodynamic nature. The CFX removal was optimized with 12.41 ppm CFX, 60.60 mg/L of CZ-BNC-APP, after 97.55 min and at 35 °C, the real maximum removal was 95.53% with 100.52 mg g-1 of the maximum adsorption capacity and 99.5% of the coefficient. The adsorption of CFX on CZ-BNC-APP was fitted with pseudo-second-order model and both Langmuir and Freundlich isotherms models. These findings revealed that CZ-BNC-APP exhibited high potential to remove CFX.
The presence of heavy metals in aquatic systems has become a serious problem. Heavy metals can haveadverse effects on the environment as well as on human health. As a result, much attention has beengiven to new technologies for removal of heavy metal ions from contaminated waters. In this study,Microwave Incinerated Rice Husk Ash (MIRHA), a locally available agricultural waste, was used for theremoval of Cd (as a representative heavy metal) from synthetic wastewater by batch adsorption process.The effects of pH, initial metal concentration, and contact time on Cd removal efficiency were studied.pH 4 was found to be the optimum. The removal efficiency was found to be correlated with the initialmetal concentration and contact time between adsorbent and adsorbate. Cd adsorption kinetics followedthe pseudo-second-order model and implied chemisorption. The adsorption equilibrium of Cd can bewell described by the Freundlich isotherm model.
Ordered microporous NaY zeolite and mesoporous copper oxide are high performance material as catalysts and adsorbents. The copper oxide-NaY zeolite modification in combination of their physicochemical properties could provide excellent opportunities for the creation of new gas adsorbents. In this study, modified NaY zeolite properties and methane adsorptive characteristics were investigated by dispersing copper oxide onto the NaY zeolite structure using the thermal dispersion method. The structures of the copper oxide modified zeolites were characterized by powder X-ray diffraction and Micromeritics ASAP 2000, while the methane adsorption characteristics were analyzed using a thermogravimetric analyzer. The results revealed that types of copper oxide, copper oxide loading concentration, calcination temperature and calcination time greatly affected the modified zeolite structure and gas methane adsorption characteristics.
This paper reviews the literature on uranium contamination and the removal of uranium from wastewater stemming from mining activities and nuclear power generation. After reviewing the applications of uranium in power generation, military, industry and scientific, this review discusses uranium and rare earth elements in wastewaters and the toxicity of uranium on aquatic life and humans. Further, various methods of removal of heavy metal contaminants including uranium are reviewed with special focus on the adsorption process and carbon nanotubes as a superior adsorbent.
Aluminium (Al) is a low cost, lightweight and corrosion resistant material, which corrodes when exposed to pitting agents. Palm olein exhibits characteristics, which indicate its suitability as a corrosion inhibitor. Tween 20, hexane and diethyl triamine were used as additives to Palm olein to form the inhibitor formulation POT2OHA. The inhibition efficiency (IE) and behaviour of the POT2OHA were determined using potentiodynamic polarization in which Al 6061 samples were immersed in a 1 M HC1 solution at 26, 50 and 70 °C in the presence of different POT2OHA concentrations: 0, 0.03, 0.07, 0.10, 0.13 and 0.17 M The IE increased with increasing POT2OHA concentration, but decreased with increasing temperature. The work presented indicates that POT2OHA is a mixed-type inhibitor capable of inhibiting both corrosive anodic and cathodic reactions. According to the Langmuir isotherm results POT2OHA adsorbs on the A16061 surface through semiphys iosorption and/or semi-chemisorption. The POT2OHA adsorption mechanism on Al 6061 takes through the protonation of micelles by the HC1 solution, whereby protonated micelles in the presence of chloride ions adsorb on both cathodic and anodic surface corrosion sites.
Mercury emission into the atmosphere is a global concern due to its detrimental effects on human health in general. The two main sources of mercury emission are natural sources and anthropogenic sources. Mercury emission from natural sources include volcanic activity, weathering of rocks, water movement and biological processes which are obviously inevitable. The anthropogenic sources of mercury emission are from coal combustion, cement production and waste incineration. Thus, in order to reduce mercury emission it is appropriate to investigate how mercury is released from the anthropogenic sources and consequently the mercury removal technology that can be implemented in order to reduce mercury emission into the atmosphere. Many alternatives have been developed to reduce mercury emission and the recent application of activated carbon showed high potential in the adsorption of elemental mercury. This paper discusses the ability of activated carbon and variable parameters that influence mercury removal efficiency in flue gas.
Anion clay hydrotalcite MgA1C0 3 with a Mg/A1 molar ratio of 3:1 was synthesized by co-precipitation at room temperature and pressure. The physicochemical properties were evaluated using Powder X-Ray Diffraction (PXRD), Fourier Transform Infrared (FTIR) spectroscopy and Thermogravimetric Analysis (TGA). The efficacy of anion clay hydrotalcite in the removal ofCcf- from aqueous solutions was investigated with respect to contact time, initial concentration, pH, adsorbent dosage and temperature. The Cd2- removal increased with the increased in contact time, adsorbent dosage, pH and initial concentration. Adsorption decreases with increasing initial concentration and temperature, for which the latter is indicative of an exothermic process. The equilibrium adsorption capacity of MgA1C0 3 was evaluated using linear Langmuir and Freundlich isotherms with respect to the separation factor, RL.
This research work demonstrates compositional engineering of an organic-inorganic hybrid nano-composites for modifying absolute threshold of humidity sensors. Vanadyl-2,9,16,23-tetraphenoxy-29H,31H-phthalocyanine (VOPcPhO), an organic semiconductor, doped with Titanium-dioxide nanoparticles (TiO2NPs) has been employed to fabricate humidity sensors. The morphology of the VOPcPhO:TiO2nano-composite films has been analyzed by atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). The sensors have been examined over a wide range of relative humidity i.e. 20-99% RH. The sensor with TiO2(90nm) shows reduced sensitivity-threshold and improved linearity. The VOPcPhO:TiO2(90nm) nano-composite film is comprised of uniformly distributed voids which makes the surface more favorable for adsorption of moisture content from environment. The VOPcPhO:TiO2nano-composite based sensor demonstrates remarkable improvement in the sensing parameter when equated with VOPcPhO sensors.
Herein, a new approach was proposed to produce reduced graphene oxide (rGO) from graphene oxide (GO) using various oil palm wastes: oil palm leaves (OPL), palm kernel shells (PKS) and empty fruit bunches (EFB). The effect of heating temperature on the formation of graphitic carbon and the yield was examined prior to the GO and rGO synthesis. Carbonization of the starting materials was conducted in a furnace under nitrogen gas for 3 h at temperatures ranging from 400 to 900 °C and a constant heating rate of 10 °C/min. The GO was further synthesized from the as-carbonized materials using the 'improved synthesis of graphene oxide' method. Subsequently, the GO was reduced by low-temperature annealing reduction at 300 °C in a furnace under nitrogen gas for 1 h. The IG/ID ratio calculated from the Raman study increases with the increasing of the degree of the graphitization in the order of rGO from oil palm leaves (rGOOPL) < rGO palm kernel shells (rGOPKS) < rGO commercial graphite (rGOCG) < rGO empty fruit bunches (rGOEFB) with the IG/ID values of 1.06, 1.14, 1.16 and 1.20, respectively. The surface area and pore volume analyses of the as-prepared materials were performed using the Brunauer Emmett Teller-Nitrogen (BET-N₂) adsorption-desorption isotherms method. The lower BET surface area of 8 and 15 m2 g-1 observed for rGOCG and rGOOPL, respectively could be due to partial restacking of GO layers and locally-blocked pores. Relatively, this lower BET surface area is inconsequential when compared to rGOPKS and rGOEFB, which have a surface area of 114 and 117 m² g-1, respectively.
Advanced oxidation process involves production of hydroxyl radical for industrial wastewater treatment. This method is based on the irradiation of UV light to photocatalysts such as TiO2 and ZnO for photodegradation of pollutant. UV light is used for irradiation in photocatalytic process because TiO2 has a high band gap energy which is around 3.2 eV. There can be shift adsorption to visible light by reducing the band gap energy to below 3.2 eV. Doped catalyst is one of the means to reduce band gap energy. Different methods are used for doped catalyst which uses transition metals and titanium dioxide. The band gap energy of three types of transition metals Fe, Cd and Co after being doped with TiO2, are around 2.88 ev, 2.97ev and 2.96 ev, respectively which are all below TiO2 energy. Some of the transition metals change the energy level to below 3.2 eV and the adsorption shifts to visible light for degradation of industrial pollutant after being doped with titanium dioxide. This paper aims at providing a deep insight into advanced oxidation processes, photocatalysts and their applications in wastewater treatment, doping processes and the effects of operational factors on photocatalytic degradation.
The preparation of activated carbon using palm kernel shells as the precursor (PKSAC) was successfully accomplished after the parametric optimization of the carbonization temperature, carbonization holding time, and the ratio of the activator (H₃PO₄) to the precursor. Optimization at 500 °C for 2 h of carbonization with 20% H₃PO₄ resulted in the highest surface area of the activated carbon (C20) of 1169 m² g-1 and, with an average pore size of 27 Å. Subsequently, the preparation of shape-stabilized phase change material (SSPCM-C20) was done by the encapsulation of n-octadecane into the pores of the PKSAC, C20. The field emission scanning electron microscope images and the nitrogen gas adsorption-desorption isotherms show that n-octadecane was successfully encapsulated into the pores of C20. The resulting SSPCM-C20 nano-composite shows good thermal reliability which is chemically and thermally stable and can stand up to 500 melting and freezing cycles. This research work provided a new strategy for the preparation of SSPCM material for thermal energy storage application generated from oil palm waste.
A novel magnetic graphene oxide modified with chitosan (MGO-CTS) was synthesised as an adsorbent aimed to examine the simultaneous removal of mycotoxins. The composite was characterised by various procedures, namely Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and a scanning electron microscope (SEM). The adsorption evaluation was considered via pH effects, initial mycotoxin concentration, adsorption time and temperature. Adsorption isotherm data and kinetics experiments were acquired at the optimum pH 5 fit Freundlich isotherm as well as pseudo-second-order kinetic models. The thermodynamic results indicated that the adsorption of the mycotoxins was spontaneous, endothermic and favourable.
Ultrafiltration has been proven to be very effective in the treatment of oil-in-water emulsions, since no chemical additives are required. However, ultrafiltration has its limitations, the main limits are concentration polarization resulting to permeate flux decline with time. Adsorption, accumulation of oil and particles on the membrane surface which causes fouling of the membrane. Studies have shown that the ultrasonic is effective in cleaning of fouled membrane and enhancing membrane filtration performance. But the effectiveness also, depends on the selection of appropriate membrane material, membrane geometry, ultrasonic module design, operational and processing condition. In this study, a hollow and flat-sheet polyurethane (PU) membranes synthesized with different additives and solvent were used and their performance evaluated with oil-in-water emulsion. The steady-state permeate flux and the rejection of oil in percentage (%) at two different modes were determined. A dry/wet spinning technique was used to fabricate the flat-sheet and hollow fibre membrane (HFMs) using Polyethersulfone (PES) polymer base, Polyvinylpyrrolidone (PVP) additive and N, N-Dimethylacetamide (DMAc) solvent. Ultrasonic assisted cross-flow ultrafiltration module was built to avoid loss of ultrasonic to the surrounding. The polyurethane (PU) was synthesized by polymerization and sulphonation to have an anionic group (-OH; -COOH; and -SO3H) on the membrane surface. Changes in morphological properties of the membrane had a significant effect on the permeate flow rate and oil removal. Generation of cavitation and Brownian motion by the ultrasonic were the dominant mechanisms responsible for ultrafiltration by cracking the cake layers and reducing concentration polarization at the membrane surface. The percentage of oil after ultrafiltration process with ultrasonic is about 90% compared to 49% without ultrasonic. Ultrasonic is effective in enhancing the membrane permeate flux and controlling membrane fouling.
The pollution of the world's water resources is a growing issue which requires remediation. Surfactants used in many domestic and industrial applications are one of the emerging contaminants that require immediate attention. Treating water contaminated with surfactants using adsorption provides better performance when compared to other techniques. A variety of materials have been developed for adsorbing surfactants. Activated carbon is the most suitable adsorbent for removing surfactants but is expensive to synthesize and difficult to regenerate. Therefore, a variety of new adsorbents such as zeolites, nanomaterials, resins, biomaterials and clays have been developed as alternatives. The developed adsorbents are promising but considerable research is still required to develop highly efficient, economical, environment friendly and sustainable adsorbents to replace activated carbon. This paper critically reviews the characteristics of adsorbents, the performance of adsorbents, kinetics, isotherms and thermodynamics, mechanisms of adsorption, regeneration of adsorbents and future perspectives in the adsorption of surfactants. Developing novel adsorbents, testing adsorbents in real wastewaters and recycling the adsorbents are required in future studies in the removal of surfactants.
This paper investigates the selectivity of GMA-based-non-woven fabrics adsorbent towards copper ion (Cu) functionalized with several aliphatic amines. The aliphatic amines used in this study were ethylenediamine (EDA), diethylenetriamine (DETA), triethylenetetramine (TETA), and tetraethylenepentamine (TEPA). The non-woven polyethylene/polypropylene fabrics (NWF) were grafted with glycidyl methacrylate (GMA) via pre-radiation grafting technique, followed by chemical functionalization with the aliphatic amine. To prepare the ion recognition polymer (IRP), the functionalized amine GMA-grafted-NWF sample was subjected to radiation crosslinking process along with the crosslinking agent, divinylbenzene (DVB), in the presence of Cu ion as a template in the matrix of the adsorbent. Functionalization with different aliphatic amine was carried out at different amine concentrations, grafting yield, reaction temperature, and reaction time to study the effect of different aliphatic amine onto amine density yield. At a concentration of 50% of amine and 50% of isopropanol, EDA, DETA, TETA, and TEPA had attained amine density around 5.12, 4.06, 3.04, and 2.56 mmol/g-ad, respectively. The amine density yield decreases further as the aliphatic amine chain grows longer. The experimental condition for amine functionalization process was fixed at 70% amine, 30% isopropanol, 60 °C for grafting temperature, and 2 h of grafting time for attaining 100% of grafting yield (Dg). The prepared adsorbents were characterized comprehensively in terms of structural and morphology with multiple analytical tools. An adsorptive removal and selectivity of Cu ion by the prepared adsorbent was investigated in a binary metal ion system. The IRP samples with a functional precursor of EDA, the smallest aliphatic amine had given the higher adsorption capacity and selectivity towards Cu ion. The selectivity of IRP samples reduces as the aliphatic amine chain grows longer, EDA to TEPA. However, IRP samples still exhibited remarkably higher selectivity in comparison to the amine immobilized GMA-g-NWF at similar adsorption experimental conditions. This observation indicates that IRP samples possess higher selectivity after incorporation of the ion recognition imprint technique via the radiation crosslinking process.
Coal-based activated carbon materials is a prospective materials for hydrogen storage application. The present work
aimed to study the effect of post treatments including mechanical milling process and pelletization and simulating
experimentally the conditions of pelletization of fine particles of activated coal. Post treatment of activated coal consist
of 2 steps mechanical milling process in planetary ball mill followed by pelletization. First step of mechanical milling
process gave particle size reduction and second step was undertaken to maintain activity of activated coal. Second step
of mechanochemical process were done in dry (ACP-A) and wet condition (ACP-B) with the ratio of sample: KOH was
1:1 and performed for 1 h. Then they will be formed into pellets with the addition of binder which contained fructose,
glucose and oligo. Some examinations such as PSA, BET, SEM and XRD were performed to determine the characteristics of
activated carbon materials including hydrogen adsorption capacity testing. Particle size reduction of activated carbon
reached 98.9% after planetary ball milling. The raw material of activated carbon (AC) has hydrogen adsorption as much
as from 0.30 and 0.25 wt. % from -5 and 25o
C measurements, respectively. As predicted the adsorption of hydrogen gas
of pelletized activated carbon from bituminous coal decreased due to post treatment process about 47% for ACP-A and
60% for ACP-B at 4000 Bar.
Titanate compounds was synthesized using hydrothermal method at various temperature (100, 150, 200, and 250 °C) for 24 hours. As-synthesized titanate was characterized using FTIR, XRD and nitrogen gas adsorption. FTIR spectra was scanned from 4000 to 400 cm-1 using Perkin Elmer Spectrum 100 FTIR spectrophotometer. XRD diffractogram was performed by using Rigaku Miniflex (II) X-ray diffractometer operating at a scanning rate of 2.00° min-1. The diffraction spectra were recorded at the diffraction angle, 2θ from 10° to 80° at room temperature. Nitrogen gas adsorption analysis was studied by using Micromeritics ASAP2020 (Alaska) to determine the surface area and pores size distribution. The nitrogen adsorption and desorption was measured at 77 K (temperature of liquid nitrogen) and the samples were degassed in a vacuum at 110 °C under nitrogen flow for overnight prior to analysis.
A new crosslinked chitosan grafted with methyl methacrylate (M-CTS) adsorbent was synthesized via free radical polymerization for effective removal of Cu(II) ions from aqueous solution. Crosslinked chitosan (1 g) was grafted with 29.96 × 10-1 M methyl methacrylate in the presence of 2.63 × 10-1 M ammonium persulfate as initiator at 60 °C for 2 h to give grafting and yield percentages of 201% and 67%, respectively. Batch adsorption experiment was performed as a function of solution pH, initial metal ion concentration and contact time. The isotherm data were adequately described by Langmuir model, while kinetic study revealed that the pseudo-second order rate model best fitted for the experimental data. The maximum adsorption capacity for M-CTS at pH 4 was 192.31 mg g-1. Furthermore, the reusability of over six adsorption-desorption cycles suggested that M-CTS is a durable adsorbent and good candidate for metal ions treatment.
In this work, a chitosan-modified nanofiber membrane was fabricated and used to examine the permeation characteristics of C-phycocyanin (CPC) obtained from Spirulina platensis. The effects of NaCl concentration (0.1-1.0 M), chitosan coupling pH (6-8), chitosan coupling concentration (0.1-3.0%), algal solution pH (6-8), algal mass concentration (0.1-1.0% dw/v), and membrane flux (4.08 × 10-2-2.04 × 10-1 mL/min·cm2) on the penetration performance of the membrane for CPC were investigated. The results show that the order of binding selectivity of the membrane for these proteins is contaminating proteins (TP) > allophycocyanin (APC) > CPC. TP and APC molecules were more easily adsorbed by the chitosan-modified membrane, and the CPC molecules most easily penetrated the membrane without being adsorbed, enhancing CPC purity. The purification factor and total mass flux were 3.3 fold and 66%, respectively, in a single step.