Displaying publications 381 - 400 of 623 in total

Abstract:
Sort:
  1. Nuramira Azizan, Nihayah Mohamad, Ahmad Zorin Sahalan
    MyJurnal
    Bunga rafflesia cantleyi Solms-Laubach merupakan salah satu jenis tumbuhan liar boleh ditemui di hutan tanah rendah di Semenanjung Malaysia dan digunakan secara meluas dalam ubatan tradisional. Objektif utama dalam kajian ini adalah untuk menguji keberkesanan ekstrak tumbuhan ini sebagai agen aktiviti antibakteria. rafflesia cantleyi Solms-Laubach diesktrak dengan menggunakan tiga kaedah pengekstrakkan berperingkat iaitu petroleum eter (PE) diikuti dengan etil asetat (EA) dan berakhir dengan etanol. Kesemua ekstrak ini kemudiannya diuji terhadap beberapa bakteria ujian iaitu Staphylococcus aureus ATCC 25923, Staphylococcus epidermidis, Escherichia coli ATCC 25922 dan Salmonella typhimurium dengan menggunakan kaedah resapan telaga. Hasil keputusan menunjukkan ekstrak etil asetat dan etanol mempunyai kesan perencatan bakteria yang baik, manakala ekstrak petroleum eter langsung tidak menunjukkan sebarang aktiviti antibakteria. Hasil kajian juga mendapati bahawa ekstrak etil asetat lebih ketara merencat kesemua bakteria yang diuji berbanding dengan ekstrak ethanol. Dua ujian lain yang dijalankan iaitu ujian penentuan nilai kepekatan perencatan minimum (MIC) dan nilai kepekatan minimum bakterisidal (MBC) didapati menyokong keputusan ujian kaedah resapan telaga di mana nilai MIC yang diperoleh bagi ekstrak etil asetat adalah lebih rendah iaitu dalam julat 6.25 hingga 12.5 mg/ml dan nilai MBC pula dalam julat 25.0 hingga 50.0 mg/ml berbanding ekstrak etanol dengan nilai MIC yang lebih besar iaitu dalam julat 25.0 hingga 50.0 mg/ml dan nilai MBCnya adalah 100.0 mg/ml.
    Matched MeSH terms: Staphylococcus aureus
  2. Alimon, H, Abdullah Sani, A., Syed Abdul Azziz, S. S., Daud, N., Mohd Arriffin, N., Mhd Bakri, Y.
    MyJurnal
    Lansium domesticum Corr. is a fruit tree of the Meliaceae family, which is commonly found in SouthEast Asia with a wide range of varieties. This study investigated three varieties of L. domesticum; Duku, Langsat and Dokong for the phytochemical screening and antimicrobial activity. Seeds from the matured fruits were extracted using hexane, methanol and water. The crude extracts were screened for antimicrobial activities toward three bacteria, namely, Pseudomonas aeruginosa, Bacillus subtilis, and Staphylococcus aureus. The findings showed that Langsat seed extracts contained more groups of compounds compared with the other two varieties, and its methanol extract demonstrated the highest inhibition zones against the three bacteria. The crude methanol extract of Duku seeds showed inhibition zones only towards Bacillus subtilis at a high concentration (1.0 mgL-1), whilst the seed extracts of Dokong showed no inhibition zones towards any of the tested bacteria.
    Matched MeSH terms: Staphylococcus aureus
  3. Wong, HS, YH, William Chang, Neeta, K.B., Lum, SG, Seet, KC, Tan, HL, et al.
    Medicine & Health, 2008;3(2):294-299.
    MyJurnal
    Methicillin-resistant Staphylococcus aureus (MRSA) infection is important among vas-cular surgical patients. Its effect can be devastating resulting in limb amputation and mortality. We performed a retrospective patients record analysis to determine the pat-tern of MRSA infection among vascular surgical patients in Hospital Kuala Lumpur from January 2005 to December 2007. We also attempted to identify the factors asso-ciated with poor clinical outcome after such infection. There were 999 patients who underwent vascular surgeries in HKL within  the analysis period. Of these 24 patients (2.4%) were detected to have MRSA surgical site infection. The infection was commoner among cigarette smokers, patients with diabetes melitus and those who had previous vascular surgery. Most infections occurred in the emergency surgery category and manifested as wound breakdown. Fifty-four percent of the infected pa-tients ended with graft removal, amputations or death. MRSA infection complicating vascular surgery resulted in poor clinical outcome. This serious threat requires intensi-fied preventive measures.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus
  4. Intan Azura Shahdan, Fatimah Zahrah Mohd Sobr, Mohammad Faiz Hizzuan Hanap, Hanani Ahmad Yusof, How, Fiona N.F.
    MyJurnal
    Dental plaque is a structurally and functionally organized biofilm. Modern molecular
    biological techniques have identified about 1000 different bacterial species in the dental biofilm,
    twice as many as can be cultured. Inherent resistance of biofilm bacteria to conventional
    antibiotics is alarming. It induces antibiotic resistance to an order of three or more in magnitude
    greater than those displayed by planktonic bacteria. Staphylococcus aureus is the most dominant
    bacterial species isolated from the saliva and dental plaques. One of the reasons for its
    pathogenicity is its ability to form biofilms. In this study, the resistance of S. aureus biofilms
    against a eries of metal-antibiotics, an alternative to the conventional antibiotics, was
    investigated. (Copied from article).
    Matched MeSH terms: Staphylococcus aureus
  5. Saurabh CK, Gupta S, Variyar PS
    J Food Sci Technol, 2018 Jun;55(6):1982-1992.
    PMID: 29892098 DOI: 10.1007/s13197-018-3112-3
    The objective of this study was to develop biodegradable active film to improve the shelf-life of minimally processed fresh-produce. Guar gum (GG) based films with improved properties were fabricated by employing tween-80 (0.88%) as emulsifier, nanoclay (13.9%) as reinforcement, beeswax (1.21%) for hydrophobicity, glycerol (3.07%) as plasticizer, and grape pomace extract (5%) as active ingredient (%w/w of GG). Active films had a tensile strength of 122 MPa and water vapor transmission rate of 69 gm-2d-1. Films demonstrated significant antimicrobial activity against Escherichia coli, Staphylococcus aureus, Bacillus cereus, and Salmonella Typhimurium. The 2 kGy irradiated minimally processed pomegranate arils packed in film demonstrated a shelf-life of 12 days as compared to 4 days for unirradiated samples. The observed improvement in shelf-life was due to a radiation-induced release of antimicrobial volatiles from active films as confirmed by headspace analysis using GC-MS. Suitability of active films for food irradiation applications is thus demonstrated.
    Matched MeSH terms: Staphylococcus aureus
  6. Yusoff, N. A. H., Sanuan, F. M., Rukayadi, Y.
    MyJurnal
    Nowadays consumer is more demand on natural foodstuff instead of synthetic product due to their concern on health. The objective of this study is to investigate the effect of C. caudatus extract on the number of microflora in oyster mushroom at different concentration of C. caudatus extract and exposure time using dilution method. The results showed that the number of microorganisms (Log10 CFU/g) in oyster mushroom in term of Total Plate Count (TPC), Bacillus cereus, Escherichia coli and Staphylococcus aureus were 6.13 ± 0.04, 6.15 ± 0.09, 5.97 ± 0.04, and 6.46 ± 0.00, respectively. The effect of C. caudatus extract on microflora in oyster mushroom at concentrations of 0.00%, 0.05%, 0.5%, and 5.0% with exposure time of 0, 5, 10, and 15 min demonstrated that the reduction number of microflora in oyster mushroom was dependent on the concentration of C. caudatus extract and exposure times. The number of TPC (Log10 CFU/g) in oyster mushroom was significantly reduced after treated with C. caudatus extract at concentration of 0.05% for 15 min; 6.13 ± 0.04 reduced to 2.62 ± 0.07. Moreover, B. cereus (Log10 CFU/g) in oyster mushroom was significantly reduced by treatment of C. caudatus extract at concentration of 0.05% for 5 min; 6.15 ± 0.09 reduced to 3.77 ± 0.15. Meanwhile, the number of E. coli (Log10 CFU/g) in oyster mushroom was significantly reduced at concentration of 0.05% for 10 min; 5.97 ± 0.04 reduced to 3.21 ± 0.13. Lastly, the survival number of S. aureus in oyster mushroom was significantly reduced after treated with C. caudatus extract at concentration of 0.05% for 15 min; 6.46 ± 0.00 reduced to 4.83 ± 0.07. In conclusion, C. caudatus extract has potentiality to be developed as natural sanitizer for rinsing raw food materials such as oyster mushroom.
    Matched MeSH terms: Staphylococcus aureus
  7. Kemung HM, Tan LT, Khan TM, Chan KG, Pusparajah P, Goh BH, et al.
    Front Microbiol, 2018;9:2221.
    PMID: 30319563 DOI: 10.3389/fmicb.2018.02221
    Methicillin-resistant Staphylococcus aureus (MRSA) pose a significant health threat as they tend to cause severe infections in vulnerable populations and are difficult to treat due to a limited range of effective antibiotics and also their ability to form biofilm. These organisms were once limited to hospital acquired infections but are now widely present in the community and even in animals. Furthermore, these organisms are constantly evolving to develop resistance to more antibiotics. This results in a need for new clinically useful antibiotics and one potential source are the Streptomyces which have already been the source of several anti-MRSA drugs including vancomycin. There remain large numbers of Streptomyces potentially undiscovered in underexplored regions such as mangrove, deserts, marine, and freshwater environments as well as endophytes. Organisms from these regions also face significant challenges to survival which often result in the production of novel bioactive compounds, several of which have already shown promise in drug development. We review the various mechanisms of antibiotic resistance in MRSA and all the known compounds isolated from Streptomyces with anti-MRSA activity with a focus on those from underexplored regions. The isolation of the full array of compounds Streptomyces are potentially capable of producing in the laboratory has proven a challenge, we also review techniques that have been used to overcome this obstacle including genetic cluster analysis. Additionally, we review the in vivo work done thus far with promising compounds of Streptomyces origin as well as the animal models that could be used for this work.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus
  8. Nor Hazliana Harun, Rabiatul Basria S. M. N. Mydin, Khairul Arifah Saharudin, Sreekantan, Srimala, Khor Yong Ling, Norfatehah Basiron, et al.
    MyJurnal
    There is a growing concern in using zinc oxide nanoparticles (ZnO NPs) for medical devices as alternative options in reducing hospital-acquired infections (HAIs). The commensal HAIs; Staphylococcus aureus (S.aureus) infect patients and lead to increased rates of morbidity and mortality. This study aims to investigate the antibacterial action of ZnO NPs in three different shapes; nanorod, nanoflakes and nanospheres impregnated in low-density polyethylene (LDPE) against S.aureus ATCC 25923. Methods: The antibacterial efficiency of ZnO NPs was studied through two standard test methods included were based on Clinical Laboratory Standards Institute (CLSI) guidelines MO2-A11 under light conditions of 5.70 w/m2 and American standard test method (ASTM) E-2149. Results: Preliminary screening did show a significant growth inhibition against S.aureus with ZnO NPs nanorod and nanoflakes, approximately in 7 to 8 mm zones of inhibition. Further analysis using ASTM E-2149 in dynamic conditions revealed variable activity depending on incubation treatment periods. It demonstrated the ZnO NPs in nanoflakes and nanosphere shape showed better inhibition against S.aureus with maximum reduction (100%). The FESEM results strongly suggest that the structure of ZnO nanoflakes and nanosphere played an importance role in nanomaterial-bacteria interaction which consequently cause cell membrane damage. Additionally, the irradiation under light treatment also enhance the generation of ROS and free radicals which helps the bactericidal activity against S.aureus. Conclusion: This study provides new insights for the antibacterial action of ZnO NPs/LDPE thin films in future biomedical appliances to reduce HAIs risks.
    Matched MeSH terms: Staphylococcus aureus
  9. SAWEI J, NORRAKIAH ABDULLAH SANI, AMINAH ABDULLAH, SAHILAH ABD. MUTALIB
    Sains Malaysiana, 2013;42:1715-1720.
    Kajian ini dijalankan untuk mengesahkan kemampuan teknologi DNA mikroaturan cip gen OliproTM FoodPATH bagi mengesan bakteria patogen makanan. Sebanyak 9 jenis DNA bakteria patogen makanan telah digunakan iaitu Bacillus cereus, Escherichia coli O157:H7, Staphylococcus aureus, Vibrio cholerae, Vibrio parahaemolyticus, Listeria monocytogenes, Salmonella spp., Shigella spp. dan Campylobacter spp. Sebanyak 36 kombinasi templat DNA bakteria patogen makanan telah digunakan. Pengesahan bagi mengesan bakteria patogen makanan dilakukan dengan menggunakan kaedah reaksi berantai polimerase (PCR) dan penghibridan Southern-blotting di atas cip gen untuk mengesahkan kemampuannya. Keputusan daripada analisis hibridasi di atas cip gen telah dibandingkan dengan hasil gel elektroforesis 2.0% (w/v). Lima saringan diperlukan untuk menghabiskan 36 kombinasi templat DNA bakteria patogen makanan. Setiap saringan, satu cip gen telah digunakan sebagai kawalan negatif tidak diinokulasikan dengan sebarang kombinasi DNA bakteria patogen makanan. Daripada hasil kajian, didapati bahawa semua kombinasi templat DNA bakteria patogen makanan telah dapat dikesan. Cip yang digunakan sebagai kawalan negatif tidak menunjukkan kehadiran DNA. Oleh itu, daripada kajian ini cip gen OliproTM FoodPATH didapati memberikan keputusan yang lebih baik berbanding dengan 2.0% (w/v) gel elektroforesis.
    Matched MeSH terms: Staphylococcus aureus
  10. Iqbal Hussain, Syed Salman, Sarwat Iftikhar, Samin Jan, Junaid Akhter, Muhammad Ramzan, et al.
    Sains Malaysiana, 2018;47:749-754.
    Cephradine belongs to the first generation cephalosporin having a broad range of anti-bacterial activities. In the
    present work, Cephradine wasreacted with different metal salts. These metal salts were Iron, Copper, Cobalt and Nickel
    salts. All the complexes of Cephradine metals were synthesized at room temperature using a mechanical vibrator.
    The reactions yielded the coordinated complexes within 5-10 min with improved product yield. The synthesized
    complexes were analyzed for their antibacterial power using disc diffused assay. All the Cephradine complexes showed
    powerful antibacterial activity. The Co, Cu, Ni and Sn complexes showed good antibacterial activities 18.5 mm by Cu
    complexes against S. typhi, 17 mm against B. subtillus 16.5 mm against S. aureus, 16 mm against S. coccus. Similarly
    Sn complexes exhibited 17 mm zone of inhibition against S. coccus and 15.5 mm against B. subtillus. Cobalt and Ni
    complexes also shed significant inhibition activities against bacterial pathogenic bacterial strains. The study is of
    particular importance and new, using mechanical vibrator for the first time. The product yield is also comparatively
    good with short reaction time.
    Matched MeSH terms: Staphylococcus aureus
  11. Wan Mat Khalir WKA, Shameli K, Jazayeri SD, Othman NA, Che Jusoh NW, Mohd Hassan N
    Nanomaterials (Basel), 2020 Jun 03;10(6).
    PMID: 32503127 DOI: 10.3390/nano10061104
    It is believed of great interest to incorporate silver nanoparticles (Ag-NPs) into stable supported materials using biological methods to control the adverse properties of nanoscale particles. In this study, in-situ biofabrication of Ag-NPs using Entada spiralis (E. spiralis) aqueous extract in Ceiba pentandra (C. pentandra) fiber as supporting material was used in which, the E. spiralis extract acted as both reducing and stabilizing agents to incorporate Ag-NPs in the C. pentandra fiber. The properties of Ag-NPs incorporated in the C. pentandra fiber (C. pentandra/Ag-NPs) were characterized using UV-visible spectroscopy (UV-vis), X-ray Diffraction (XRD), Field Emission Transmission Electron Microscope (FETEM), Scanning Electron Microscope (Scanning Electron Microscope (SEM), Energy Dispersive X-ray (EDX), Brunauer-Emmett-Teller (BET), Thermogravimetric (TGA) and Fourier Transform Infrared (FTIR) analyses. The average size of Ag-NPs measured using FETEM image was 4.74 nm spherical in shape. The C. pentandra/Ag-NPs was easily separated after application, and could control the release of Ag-NPs to the environment due to its strong attachment in C. pentandra fiber. The C. pentandra/Ag-NPs exposed good qualitative and quantitative antibacterial activities against Staphylococcus aureus (ATCC 25923), Enterococcus faecalis (ATCC 29212), Escherichia coli (ATCC 25922) and Proteus vulgaris (ATCC 33420). The dye catalytic properties of C. pentandra/Ag-NPs revealed the dye reduction time in which it was completed within 4 min for 20 mg/L rhodamine B and 20 min for 20 mg/L methylene blue dye, respectively. Based on the results, it is evident that C. pentandra/Ag-NPs are potentially promising to be applied in wound healing, textile, wastewater treatment, food packaging, labeling and biomedical fields.
    Matched MeSH terms: Staphylococcus aureus
  12. Alhajj M, Aziz MSA, Huyop F, Salim AA, Sharma S, Ghoshal SK
    Biomater Adv, 2022 Nov;142:213136.
    PMID: 36206587 DOI: 10.1016/j.bioadv.2022.213136
    This paper reports the characterization and antibacterial performance evaluation of some spherical and stable crystalline silver (Ag)/copper (Cu) nanocomposites (Ag-CuNCs) prepared in deionized water (DIW) using pulse laser ablation in liquid (PLAL) method. The influence of various laser fluences (LFs) on the structural, morphological, optical and antibacterial properties of these NCs were determined. The UV-Vis absorbance of these NCs at 403 nm and 595 nm was gradually increased accompanied by a blue shift. XRD patterns disclosed the nucleation of highly crystalline Ag-CuNCs with their face centered cubic lattice structure. TEM images showed the existence of spherical NCs with size range of 3-20 nm and lattice fringe spacing of approximately 0.145 nm. EDX profiles of Ag-CuNCs indicated their high purity. The antibacterial effectiveness of the Ag-CuNCs was evaluated by the inhibition zone diameter (IZD) and optical density (OD600) tests against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. The proposed NCs revealed the IZD values in the range of 22-26 mm and 20-25 mm when tested against E. coli and S. aureus bacteria, respectively. The Ag-CuNCs prepared at LF of 14.15 J/cm2 revealed the best bactericidal activity. It is established that by controlling the laser fluence the bactericidal effectiveness of the Ag-CuNCs can be tuned.
    Matched MeSH terms: Staphylococcus aureus
  13. Ng SF, Leow HL
    Drug Dev Ind Pharm, 2015;41(11):1902-9.
    PMID: 25758412 DOI: 10.3109/03639045.2015.1019888
    It has been established that microbial biofilms are largely responsible for the recalcitrance of many wound infections to conventional antibiotics. It was proposed that the efficacy of antibiotics could be optimized via the inhibition of bacterial biofilm growth in wounds. The combination of antibiofilm agent and antibiotics into a wound dressing may be a plausible strategy in wound infection management. Xylitol is an antibiofilm agent that has been shown to inhibit the biofilm formation. The purpose of this study was to develop an alginate film containing xylitol and gentamicin for the treatment of wound infection. Three films, i.e. blank alginate film (SA), alginate film with xylitol (F5) and alginate film with xylitol and gentamicin (AG), were prepared. The films were studied for their physical properties, swelling ratio, moisture absorption, moisture vapor transmission rate (MVTR), mechanical and rheology properties, drug content uniformity as well as in vitro drug release properties. Antimicrobial and antibiofilm in vitro studies on Staphylococcus aureus and Pseudomonas aeruginosa were also performed. The results showed that AG demonstrates superior mechanical properties, rheological properties and a higher MVTR compared with SA and F5. The drug flux of AG was higher than that of commercial gentamicin cream. Furthermore, antimicrobial studies showed that AG is effective against both S. aureus and P. aeruginosa, and the antibiofilm assays demonstrated that the combination was effective against biofilm bacteria. In summary, alginate films containing xylitol and gentamicin may potentially be used as new dressings for the treatment of wound infection.
    Matched MeSH terms: Staphylococcus aureus
  14. Rukayadi, Y., Abdulkarim, S.M., Sulaiman, R., Abdelkarim, H.
    MyJurnal
    Plants have been used recently to eliminate bacterial growth in food products. This study was undertaken to test the in vitro sanitizing effect of crude extract from bitter gourd (BG) fruit on the growth of native microorganisms in raw chicken leg meat. Hot air dried BG and extrudate extracts at 1% concentration and exposure times of (5, 10 and 15 min) were used to treat the samples using dilution method. Results showed that BG extrudate had a slightly stronger bactericidal activity against the microflora than the B.G. hot air drying treatment, especially, on E. coli at all exposure time. Overall, there is no significant difference between the treatments; Total Plate Count (TPC), Escherichia coli, Bacillus cereus, Staphylococcus aureus. The best reduction time of microflora by hot air dried extract was at (15 min) except for B. cereus was at (5 min) and for extrudate extract was at (5 min) except for E. coli was at (10 min). In conclusion, bitter gourd extract could be used as an important natural sanitizer for rinsing raw food matrials such chicken meat.
    Matched MeSH terms: Staphylococcus aureus
  15. Cho KH, Tan SP, Tan HY, Liew SY, Nafiah MA
    Planta Med, 2023 Jan;89(1):79-85.
    PMID: 35288885 DOI: 10.1055/a-1797-0548
    A phytochemical study has been carried out on CH2Cl2 extract of Alphonsea cylindrica leaves, resulting in the isolation of three new morphinan alkaloids. They are kinomenine (1: ), N-methylkinomenine (2: ), and hydroxymethylkinomenine (3: ). The structures of these compounds were elucidated by extensive spectroscopic analysis (1D and 2D NMR, IR, UV, HRESIMS) and comparison with the data reported in literature for similar alkaloids. Kinomenine (1: ) and N-methylkinomenine (2: ) showed weak inhibition against S. aureus (MIC values of 1: and 2:  = 500 µg/mL; pIC50 values in 95% C. I. of: 1:  = 2.9 to 3.0; 2:  = 2.9 to 3.1), while kinomenine (1: ) also showed weak inhibition against E. coli (MIC values of 1:  = 500 µg/mL; pIC50 value in 95% C. I. of: 1:  = 2.9) by broth microdilution method. The results obtained can be used as future referencefor the discovery of morphinans and the potential of A. cylindrica as an antibacterial source.
    Matched MeSH terms: Staphylococcus aureus
  16. Alli YA, Ejeromedoghene O, Oladipo A, Adewuyi S, Amolegbe SA, Anuar H, et al.
    ACS Appl Bio Mater, 2022 Nov 21;5(11):5240-5254.
    PMID: 36270024 DOI: 10.1021/acsabm.2c00670
    Quaternary Trimethyl Chitosan (QTMC) and QTMC-Silver Nanoparticles (QTMC-AgNPs) have been synthesized, characterized, and tested as antibacterial agents against Staphylococcus aureus, Escherichia coli, and two plant fungi (Sclerotium rolfsil and Fusarium oxysporum). The as-prepared water-soluble QTMC was in situ reacted with silver nitrate in the presence of clean compressed hydrogen gas (3 bar) as a reducing agent to produce QTMC-AgNPs. UV-vis, ATR-FTIR, HR-TEM/SEM, XPS, DLS, XRD, and TGA/DTG were employed to assess the optical response, morphology/size, surface chemistry, particle size distribution, crystal nature, and thermal stability of the synthesized QTMC-AgNPs, respectively. The as-prepared QTMC-AgNPs were quasi-spherical in shape with an average particle size of 12.5 nm, as determined by ImageJ software utilizing HR-TEM images and further validated by DLS analysis. The development of crystalline nanoparticles was confirmed by the presence of distinct and consistent lattice fringes with an approximate interplanar d-spacing of 2.04 nm in QTMC-AgNPs. The QTMC-AgNPs exhibited significant antibacterial activity with a clear zone of inhibition of 30 mm and 26 mm around the disks against E. coli and S. aureus, respectively. In addition, QTMC-AgNPs showed highly efficient antifungal activity with 100% and 76.67% growth inhibition against two plant pathogens, S. rolfsii and F. oxysporum, respectively, whereas QTMC revealed no impact. Overall, QTMC-AgNPs showed a promising therapeutic potential and,thus, can be considered for drug design rationale.
    Matched MeSH terms: Staphylococcus aureus
  17. Saeed SI, Vivian L, Zalati CWSCW, Sani NIM, Aklilu E, Mohamad M, et al.
    BMC Vet Res, 2023 Jan 14;19(1):10.
    PMID: 36641476 DOI: 10.1186/s12917-022-03560-6
    BACKGROUND: S. aureus is one of the causative agents of bovine mastitis. The treatment using conventional antimicrobials has been hampered due to the development of antimicrobial resistance and the ability of the bacteria to form biofilms and localize inside the host cells.

    OBJECTIVES: Here, the efficacy of graphene oxide (GO), a carbon-based nanomaterial, was tested against the biofilms and intracellular S. aureus invitro. Following that, the mechanism for the intracellular antimicrobial activities and GO toxicities was elucidated.

    METHODS: GO antibiofilm properties were evaluated based on the disruption of biofilm structure, and the intracellular antimicrobial activities were determined by the survival of S. aureus in infected bovine mammary cells following GO exposure. The mechanism for GO intracellular antimicrobial activities was investigated using endocytosis inhibitors. GO toxicity towards the host cells was assessed using a resazurin assay.

    RESULTS: At 100 ug/mL, GO reduced between 30 and 70% of S. aureus biofilm mass, suggesting GO's ability to disrupt the biofilm structure. At 200 ug/mL, GO killed almost 80% of intracellular S. aureus, and the antimicrobial activities were inhibited when cells were pre-treated with cytochalasin D, suggesting GO intracellular antimicrobial activities were dependent on the actin-polymerization of the cell membrane. At

    Matched MeSH terms: Staphylococcus aureus
  18. Nazemi N, Rajabi N, Aslani Z, Kharaziha M, Kasiri-Asgarani M, Bakhsheshi-Rad HR, et al.
    J Biomater Appl, 2023 Jan;37(6):979-991.
    PMID: 36454961 DOI: 10.1177/08853282221140672
    Porous structure, biocompatibility and biodegradability, large surface area, and drug-loading ability are some remarkable properties of zeolite structure, making it a great possible option for bone tissue engineering. Herein, we evaluated the potential application of the ZSM-5 scaffold encapsulated GEN with high porosity structure and significant antibacterial properties. The space holder process has been employed as a new fabrication method with interconnected pores and suitable mechanical properties. In this study, for the first time, ZSM-5 scaffolds with GEN drug-loading were fabricated with the space holder method. The results showed excellent open porosity in the range of 70-78% for different GEN concentrations and appropriate mechanical properties. Apatite formation on the scaffold surface was determined with Simulation body fluid (SBF), and a new bone-like apatite layer shaping on all samples confirmed the in vitro bioactivity of ZSM-5-GEN scaffolds. Also, antibacterial properties were investigated against both gram-positive and gram-negative bacteria. The incorporation of various amounts of GEN increased the inhibition zone from 24 to 28 (for E. coli) and 26 to 37 (for S. aureus). In the culture with MG63 cells, great cell viability and high cell proliferation after 7 days of culture were determined.
    Matched MeSH terms: Staphylococcus aureus
  19. Al Sulayyim H, Ismail R, Al Hamid A, Mohammed B, Abdul Ghafar N
    J Infect Dev Ctries, 2024 Mar 31;18(3):371-382.
    PMID: 38635620 DOI: 10.3855/jidc.19071
    INTRODUCTION: Prevalence of antibiotic resistance (AR) during the coronavirus 2019 (COVID-19) pandemic was higher than pre-pandemic times. This study determined the prevalence and patterns of AR among Gram-positive and negative bacteria before, during and after COVID-19 in Saudi Arabia and identified the associated factors.

    METHODOLOGY: A retrospective cross-sectional study was employed to identify patients with positive AR bacteria between March 2019 and March 2022. The bacterial isolates and patients' data were identified from laboratory and medical records departments retrospectively. Binary logistic regression analysis was performed to identify the factors associated with AR and deaths. Multinominal logistic regression was applied to confirm the factors associated with AR classification.

    RESULTS: AR Gram-negative bacteria decreased during and after the pandemic. However, S. aureus showed a negligible increase in resistance rate after pandemic, while E. faecium, recorded a higher-than-average resistance rate during the pandemic. The prevalence of pan drug resistance (PDR) during the pandemic (85.7%) was higher than before (0%) and after (14.3%), p = 0.001. The length of stay and time were significant predictors for AR classification. The odds of multi drug resistance (MDR) development to PDR during the pandemic were 6 times higher than before and after (OR = 6.133, CI =, p = 0.020). Age, nationality, COVID-19 infection, smoking, liver disease, and type and number of bacteria were associated with death of patients with positive AR.

    CONCLUSIONS: Further studies are recommended to explore the prevalence of PDR and to justify the increased rates of E. faecium AR during the COVID-19 pandemic.

    Matched MeSH terms: Staphylococcus aureus
  20. Shahdadi F, Faryabi M, Khan H, Sardoei AS, Fazeli-Nasab B, Goh BH, et al.
    Molecules, 2023 Jun 05;28(11).
    PMID: 37299028 DOI: 10.3390/molecules28114554
    Mentha longifolia is a valuable medicinal and aromatic plant that belongs to Lamiaceae family. This study looked at the antibacterial effects of M. longifolia essential oil and pulegone in edible coatings made of chitosan and alginate on the growth of Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli in cheese. For this purpose, first fresh mint plant was collected from the cold region of Jiroft in Kerman province. Plant samples were dried in the shade at ambient temperature, and essential oil was prepared using Clevenger. The essential oil was analyzed by gas chromatography using mass spectrometric (GC/MS) detection. The major composition of M. longifolia oil was pulegone (26.07%), piperitone oxide (19.72%), and piperitone (11.88%). The results showed that adding M. longifolia essential oils and pulegone to edible coatings significantly reduced the growth of bacteria during storage. The bacterial population decreased by increasing the concentration of chitosan, M. longifolia, and pulegone in edible coatings. When the effects of pulegone and M. longifolia essential oils on bacteria were compared, it was found that pulegone had a stronger effect on bacterial population reduction. Coating treatments showed more antibacterial activity on E. coli than other bacteria. In general, the results of this research showed that alginate and chitosan coatings along with M. longifolia essential oil and its active ingredient pulegone had antibacterial effects against S. aureus, L. monocytogenes, and E. coli in cheese.
    Matched MeSH terms: Staphylococcus aureus
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links