Displaying publications 461 - 480 of 926 in total

Abstract:
Sort:
  1. Assaw S, Mohd Amir MIH, Khaw TT, Bakar K, Mohd Radzi SA, Mazlan NW
    Nat Prod Res, 2020 Aug;34(16):2403-2406.
    PMID: 30600710 DOI: 10.1080/14786419.2018.1538220
    Mangrove plants are endowed with various biologically active compounds which have potent antibacterial and antioxidant properties. In present study, a bioactivity-guided fractionation for antibacterial and antioxidant active metabolites from the twigs of Avicennia officinalis collected from Kuala Selangor Nature Park, Selangor, Malaysia gave 13 major fractions. The antibacterial activity of A. officinalis fractions using well-diffusion showed strong selectivity on the Gram-positive bacteria (Staphylococcus epidermidis, S. aureus and Bacillus subtilis) with minimum inhibition concentration (MIC) values of 0.156-5.00 mg/mL. However, no antibacterial activities were observed on the Gram-negative bacteria (Vibrio cholera, Enterobacter cloacae and Escherichia coli). The active antibacterial fractions were further isolated using several chromatographic techniques to give two naphthofuranquinones, namely, avicenol C (1) and stenocarpoquinone B (2). Meanwhile, the antioxidant activity of A. officinalis fractions were evaluated using DPPH radical scavenging assay exhibited low antioxidant activities. Molecular structure of the naphthofuranquinones was elucidated using 1 D and 2 D NMR spectroscopy.
    Matched MeSH terms: Plant Extracts/chemistry*
  2. Sumitha S, Vasanthi S, Shalini S, Chinni SV, Gopinath SCB, Anbu P, et al.
    Molecules, 2018 Dec 13;23(12).
    PMID: 30551671 DOI: 10.3390/molecules23123311
    In the present study, we have developed a green approach for the synthesis of silver nanoparticles (DSAgNPs) using aqueous extract of Durio zibethinus seed and determined its antibacterial, photocatalytic and cytotoxic effects. Surface plasmon resonance confirmed the formation of DSAgNPs with a maximum absorbance (λmax) of 420 nm. SEM and TEM images revealed DSAgNPs were spherical and rod shaped, with a size range of 20 nm and 75 nm. The zeta potential was found to be -15.41 mV. XRD and EDX analyses confirmed the nature and presence of Ag and AgCl. DSAgNPs showed considerable antibacterial activity, exhibited better cytotoxicity against brine shrimp, and shown better photocatalytic activity against methylene blue. Based on the present research work, it can be concluded that DSAgNPs could be used in the field of water treatment, pharmaceuticals, biomedicine, biosensor and nanotechnology in near future.
    Matched MeSH terms: Plant Extracts/chemistry*
  3. Philipp AA, Wissenbach DK, Weber AA, Zapp J, Maurer HH
    Anal Bioanal Chem, 2011 Mar;399(8):2747-53.
    PMID: 21249338 DOI: 10.1007/s00216-011-4660-9
    Mitragyna speciosa (Kratom) is currently used as a drug of abuse. When monitoring its abuse in urine, several alkaloids and their metabolites must be considered. In former studies, mitragynine (MG), its diastereomer speciogynine (SG), and paynantheine and their metabolites could be identified in rat and human urine using LC-MS(n). In Kratom users' urines, besides MG and SG, further isomeric compounds were detected. To elucidate whether the MG and SG diastereomer speciociliatine (SC) and its metabolites represent further compounds, the phase I and II metabolites of SC were identified first in rat urine after the administration of the pure alkaloid. Then, the identified rat metabolites were screened for in the urine of Kratom users using the above-mentioned LC-MS(n) procedure. Considering the mass spectra and retention times, it could be confirmed that SC and its metabolites are so far the unidentified isomers in human urine. In conclusion, SC and its metabolites can be used as further markers for Kratom use, especially by consumption of raw material or products that contain a high amount of fruits of the Malaysian plant M. speciosa.
    Matched MeSH terms: Plant Extracts/chemistry
  4. Shahruzaman SH, Mustafa MF, Ramli S, Maniam S, Fakurazi S, Maniam S
    BMC Complement Altern Med, 2019 Aug 19;19(1):220.
    PMID: 31426778 DOI: 10.1186/s12906-019-2628-z
    BACKGROUND: Baeckea frutescens (B. frutescens) of the family Myrtaceae is a plant that has been used in traditional medicine. It is known to have antibacterial, antipyretic and cytoprotective properties. The objective of this study is to explore the mechanism of B. frutescens leaves extracts in eliminating breast cancer cells.

    METHOD: B. frutescens leaves extracts were prepared using Soxhlet apparatus with solvents of different polarity. The selective cytotoxicity of these extracts at various concentrations (20 to 160 μg/ml) were tested using cell viability assay after 24, 48 and 72 h of treatment. The IC50 value in human breast cancer (MCF-7 and MDA-MB-231) and mammary breast (MCF10A) cell lines were determined. Apoptotic study using AO/PI double staining was performed using fluorescent microscope. The glucose uptake was measured using 2-NBDG, a fluorescent glucose analogue. The phytochemical screening was performed for alkaloids, flavonoids, tannins, triterpenoids, and phenols.

    RESULTS: B. frutescens leaves extracts showed IC50 value ranging from 10 -127μg/ml in MCF-7 cells after 72 h of treatment. Hexane extract had the lowest IC50 value (10μg/ml), indicating its potent selective cytotoxic activity. Morphology of MCF-7 cells after treatment with B. frutescens extracts exhibited evidence of apoptosis that included membrane blebbing and chromatin condensation. In the glucose uptake assay, B. frutescens extracts suppressed glucose uptake in cancer cells as early as 24 h upon treatment. The inhibition was significantly lower compared to the positive control WZB117 at their respective IC50 value after 72 h incubation. It was also shown that the glucose inhibition is selective towards cancer cells compared to normal cells. The phytochemical analysis of the extract using hexane as the solvent in particular gave similar quantities of tannin, triterpenoids, flavonoid and phenols. Presumably, these metabolites have a synergistic effect in the in vitro testing, producing the potent IC50 value and subsequently cell death.

    CONCLUSION: This study reports the potent selective cytotoxic effect of B. frutescens leaves hexane extract against MCF-7 cancer cells. B. frutescens extracts selectively suppressed cancer cells glucose uptake and subsequently induced cancer cell death. These findings suggest a new role of B. frutescens in cancer cell metabolism.

    Matched MeSH terms: Plant Extracts/chemistry
  5. Ahmad T, Bustam MA, Irfan M, Moniruzzaman M, Asghar HMA, Bhattacharjee S
    Biotechnol Appl Biochem, 2019 Jul;66(4):698-708.
    PMID: 31172593 DOI: 10.1002/bab.1787
    Phytosynthesis of gold nanoparticles (AuNPs) has achieved an indispensable significance due to the diverse roles played by biomolecules in directing the physiochemical characteristics of biosynthesized nanoparticles. Therefore, the precise identification of key bioactive compounds involved in producing AuNPs is vital to control their tunable characteristics for potential applications. Herein, qualitative and quantitative determination of key biocompounds contributing to the formation of AuNPs using aqueous Elaeis guineensis leaves extract is reported. Moreover, roles of phenolic compounds and flavonoids in reduction of Au3+ and stabilization of AuNPs have been elucidated by establishing a reaction mechanism. Fourier-transform infrared spectroscopy (FTIR) showed shifting of O─H stretching vibrations toward longer wavenumbers and C═O toward shorter wavenumbers due to involvement of polyphenolic compounds in biosynthesis and oxidation of polyphenolic into carboxylic compounds, respectively, which cape nanoparticles to inhibit the aggregation. Congruently, pyrolysis-gas chromatography-mass spectrometry revealed the major contribution of polyphenolic compounds in the synthesis of AuNPs, which was further endorsed by reduction of total phenolic and total flavonoids contents from 48.08 ± 1.98 to 9.59 ± 0.92 mg GAE/g and 32.02 ± 1.31 to 13.8 ± 0.97 mg CE/g within 60 Min, respectively. Based on experimental results, reaction mechanism explained the roles of phenolic compounds and flavonoids in producing spherical-shaped AuNPs.
    Matched MeSH terms: Plant Extracts/chemistry*
  6. Li L, Zhang W, Desikan Seshadri VD, Cao G
    Artif Cells Nanomed Biotechnol, 2019 Dec;47(1):3029-3036.
    PMID: 31328556 DOI: 10.1080/21691401.2019.1642902
    Nowadays, the synthesis and characterization of gold nanoparticles (AuNPs) from plant based extracts and effects of their anticancer have concerned an important interest. Marsdenia tenacissima (MT), a conventional Chinese herbal medicine, has long been used for thousands of years to treat tracheitis, asthma, rheumatism, etc. In this present study, we optimize the reaction of parameters to manage the nanoparticle size, which was categorized by high-resolution transmission electron microscopy (HR-TEM). A different characterization method, for example, UV-visible spectroscopy (UV-vis), fourier-transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) were performed to consider the synthesized AuNPs getting from the MT leaf extract. The MT-AuNPs were analyzed for their cytotoxicity property against HepG2 cells by MTT analysis. The apoptosis was evaluated by using reactive oxygen species (ROS), migration assay, mitochondrial membrane potential (MMP) and apoptotic protein expression. Interestingly, the findings of our study observed the cytotoxicity effect of synthesized MT-AuNPs at a concentration of 59.62 ± 4.37 μg after 24 hrs treatment. Apoptosis was induced by the MT-AuNPs with enhanced ROS, changed MMP and inhibit the migration assay. Finally, the apoptosis was confirmed by the considerable up-regulation of Bax, caspase-9 and caspase-3, while the anti-apoptotic protein expressions of Bcl-2 and Bcl-XL were down-regulated. Although, in this studies, we evaluated the characterization, synthesis and anticancer action of gold nanoparticles from MT (MT-AuNPS) helpful for liver cancer therapeutics.
    Matched MeSH terms: Plant Extracts/chemistry
  7. Duangjai A, Nuengchamnong N, Suphrom N, Trisat K, Limpeanchob N, Saokaew S
    Kobe J Med Sci, 2018 Oct 15;64(3):E84-E92.
    PMID: 30666038
    This study was to assess the impact of different colors of coffee fruit (green, yellow and red) on adipogenesis and/or lipolysis using 3T3-L1 adipocytes. Characterization of chemical constituents in different colors of coffee fruit extracts was determined by ESI-Q-TOF-MS. The cytotoxicity of the extracts in 3T3-L1 preadipocytes were evaluated by MTT assay. Oil-red O staining and amount of glycerol released in 3T3-L1 adipocytes were measured for lipid accumulation and lipolysis activity. All coffee fruit extracts displayed similar chromatographic profiles by chlorogenic acid > caffeoylquinic acid > caffeic acid. Different colors of raw coffee fruit possessed inhibitory adipogenesis activity in 3T3-L1 adipocytes, especially CRD decreased lipid accumulation approximately 47%. Furthermore, all extracts except CYF and their major compounds (malic, quinic, and chlorogenic acid) increased glycerol release. Our data suggest that different colors of coffee fruit extract have possessed anti-adipogenic and lipolytic properties and may contribute to the anti-obesity effects.
    Matched MeSH terms: Plant Extracts/chemistry
  8. Cheurfa M, Abdallah HH, Allem R, Noui A, Picot-Allain CMN, Mahomoodally F
    Food Chem Toxicol, 2019 Jan;123:98-105.
    PMID: 30292622 DOI: 10.1016/j.fct.2018.10.002
    Aqueous and ethanol extracts prepared from leaves of Olea europaea L. were evaluated for in vitro antioxidant and in vivo hypocholesterolemic effect. The result of administration of O. europaea leaf extracts on serum total cholesterol, triglyceride, high-density lipoprotein (HDL), low-density lipoprotein (LDL), and very low-density lipoprotein (VLDL) in hypercholesterolaemic mice was evaluated. In addition, rutin and luteolin, reported to occur naturally in O. europaea leaves, were docked against HMG-CoA reductase, the rate-limiting enzyme in cholesterol metabolism. Mice treated with both extracts showed reduced total cholesterol (246.6 and 163.4 mg/dl, for mice groups treated with respective extracts) and LDL (150.16 and 81.28 mg/dl, for mice groups treated with respective extracts) levels as compared to the hypercholesterolaemic group (total cholesterol 253.00 mg/dl and LDL 160.00 mg/dl). Mice treated with aqueous extract (200 mg/kg body weight) showed significantly reduced triglyceride and VLDL levels as compared to the group treated with atorvastatine. HDL level of mice administered with O. europaea aqueous extract was comparable to the atorvastatine-treated group. The ethanol extract of O. europeae leaves was a potent antioxidant (IC50 69.15 mg/ml, % inhibition 54.98, 82.63 mg ascorbic acid equivalent/g extract, 7.53 mol of Fe2+/g extract, and % inhibition 49.71, for the DPPH, β-carotene bleaching, total antioxidant capacity, FRAP, and ferric thiocyanate assays, respectively). Docking studies revealed that rutin showed higher binding affinity with HMG-CoA reductase as compared to luteolin. Data gathered from this study support the development of a prophylactic biomedicine from O. europaea leaves for the management of hypercholesterolemia and atherosclerosis.
    Matched MeSH terms: Plant Extracts/chemistry
  9. Saleem H, Htar TT, Naidu R, Nawawi NS, Ahmad I, Ashraf M, et al.
    Food Chem Toxicol, 2019 Jan;123:363-373.
    PMID: 30419323 DOI: 10.1016/j.fct.2018.11.016
    We investigated into the effects of methanol and dichloromethane extracts from aerial and roots of Filago germanica (L.) Huds (Astearaceae) on key enzymes (cholinesterases, α-glucosidase and urease), antioxidant capabilities, cytotoxic potential and secondary metabolomics profile. Total phenolic and flavonoids were determined by spectrophotometric technique and secondary metabolites composition by UHPLC-MS. Antioxidant activities were assessed employing free radical scavenging, ferric reducing power and phosphomolybdenum assays. The cell-toxicity was evaluated by MTT assay against breast (MCF-7, MDA-MB-231), cervix (CaSki) and prostate (DU-145) cancers. Overall, methanol extracts were found to have higher total bioactive contents and antioxidant potential. UHPLC-MS analysis revealed significant variation in the secondary metabolites in the methanol extracts. The most common derivatives belong to seven groups i.e. alkaloids, benzoic acids, flavones, flavonols, flavan-3-ols, terpenoids and saponins. The major polyphenolic compounds were found to be kampferol, robinin, luteolin, ferulic acid, benzoic acid and salicylic acid. All the extracts showed moderate cholinesterases inhibition, whereas methanol extracts exhibited highest urease inhibition and all extracts presented a relatively high inhibition against α-glucosidase. Similarly, all extracts showed strong to moderate cytotoxicity with IC50 values ranging from 53.02 to 382.7 μg/mL. Overall, results have suggested F. germanica to be a lead source for novel natural products.
    Matched MeSH terms: Plant Extracts/chemistry*
  10. Saleem H, Zengin G, Locatelli M, Ahmad I, Khaliq S, Mahomoodally MF, et al.
    Food Chem Toxicol, 2019 Sep;131:110535.
    PMID: 31154083 DOI: 10.1016/j.fct.2019.05.043
    This study endeavours to investigate the phytochemical composition, biological properties and in vivo toxicity of methanol and dichloromethane extracts of Zaleya pentandra (L.) Jeffrey. Total bioactive contents, antioxidant (phosphomolybdenum and metal chelating, DPPH, ABTS, FRAP and CUPRAC) and enzyme inhibition (cholinesterases, tyrosinase α-amylase, and α-glucosidase) potential were assessed utilizing in vitro bioassays. UHPLC-MS phytochemical profiling was carried out to identify the essential compounds. The methanol extract was found to contain highest phenolic (22.60 mg GAE/g) and flavonoid (31.49 mg QE/g) contents which correlate with its most significant radical scavenging, reducing potential and tyrosinase inhibition. The dichloromethane extract was most potent for phosphomolybdenum, ferrous chelation, α-amylase, α-glucosidase, and cholinesterase inhibition assays. UHPLC-MS analysis of methanol extract unveiled to identify 11 secondary metabolites belonging to five sub-groups, i.e., phenolic, alkaloid, carbohydrate, terpenoid, and fatty acid derivatives. Additionally, in vivo toxicity was conducted for 21 days and the methanol extract at different doses (150, 200, 250 and 300 mg/kg) was administered in experimental chicks divided into five groups each containing five individuals. Different physical, haematological and biochemical parameters along with the absolute and relative weight of visceral body organs were studied. Overall, no toxic effect was noted for the extract at tested doses.
    Matched MeSH terms: Plant Extracts/chemistry
  11. Ali Khan MS, Ahmed N, Misbah, Arifuddin M, Zakaria ZA, Al-Sanea MM, et al.
    Food Chem Toxicol, 2018 May;115:523-531.
    PMID: 29555329 DOI: 10.1016/j.fct.2018.03.021
    In view of the report on anti-nociceptive activity of Leathery Murdah, Terminalia coriacea {Roxb.} Wight & Arn. (Combretaceae) leaves, the present study was conducted to isolate the active constituents and identify the underlying mechanisms. The methanolic extract of T. coriacea leaves (TCLME) at doses 125, 250 and 500 mg/kg orally, was subjected to various in-vivo assays in acetic acid induced writhing and formalin induced paw-licking tests with aspirin (100 mg/kg) and morphine (5 mg/kg) as reference drugs. Three flavonoids, rutin, robinin and gossypetin 3-glucuronide 8-glucoside were isolated and characterized from TCLME for the first time. The extract showed significant (p 
    Matched MeSH terms: Plant Extracts/chemistry
  12. Jusril NA, Muhamad Juhari ANN, Abu Bakar SI, Md Saad WM, Adenan MI
    Molecules, 2020 Jul 24;25(15).
    PMID: 32721993 DOI: 10.3390/molecules25153353
    Alzheimer's disease (AD) is a neurodegenerative disease and the most cause of dementia in elderly adults. Acetylcholinesterase (AChE) is an important beneficial target for AD to control cholinergic signaling deficit. Centella asiatica (CA) has proven to be rich with active ingredients for memory enhancement. In the present study, the chemical profiling of three accession extracts of CA namely SECA-K017, SECA-K018, and, SECA-K019 were performed using high-performance liquid chromatography (HPLC). Four biomarker triterpene compounds were detected in all CA accessions. Quantitative analysis reveals that madecassoside was the highest triterpene in all the CA accessions. The biomarker compounds and the ethanolic extracts of three accessions were investigated for their acetylcholinesterase (AChE) inhibitory activity using Ellman's spectrophotometer method. The inhibitory activity of the triterpenes and accession extracts was compared with the standard AChE inhibitor eserine. The results from the in vitro study showed that the triterpene compounds exhibited an AChE inhibitory activity with the half-maximal inhibitory concentration (IC50) values between 15.05 ± 0.05 and 59.13 ± 0.18 µg/mL. Asiatic acid was found to possess strong AChE inhibitory activity followed by madecassic acid. Among the CA accession extracts, SECA-K017 and SECA-K018 demonstrated a moderate AChE inhibitory activity with an IC50 value of 481.5 ± 0.13 and 763.5 ± 0.16 µg/mL, respectively from the in silico docking studies, it is observed that asiatic acid and madecassic acid showed very good interactions with the active sites and fulfilled docking parameters against AChE. The present study suggested that asiatic acid and madecassic acid in the CA accessions could be responsible for the AChE inhibitory action and could be used as markers to guide further studies on CA as potential natural products for the treatment of AD.
    Matched MeSH terms: Plant Extracts/chemistry
  13. Nipun TS, Khatib A, Ahmed QU, Redzwan IE, Ibrahim Z, Khan AYF, et al.
    Molecules, 2020 Sep 11;25(18).
    PMID: 32932994 DOI: 10.3390/molecules25184161
    The plant Psychotria malayana Jack belongs to the Rubiaceae family and is known in Malaysia as "meroyan sakat/salung". A rapid analytical technique to facilitate the evaluation of the P. malayana leaves' quality has not been well-established yet. This work aimed therefore to develop a validated analytical technique in order to predict the alpha-glucosidase inhibitory action (AGI) of P. malayana leaves, applying a Fourier Transform Infrared Spectroscopy (FTIR) fingerprint and utilizing an orthogonal partial least square (OPLS). The dried leaf extracts were prepared by sonication of different ratios of methanol-water solvent (0, 25, 50, 75, and 100% v/v) prior to the assessment of alpha-glucosidase inhibition (AGI) and the following infrared spectroscopy. The correlation between the biological activity and the spectral data was evaluated using multivariate data analysis (MVDA). The 100% methanol extract possessed the highest inhibitory activity against the alpha-glucosidase (IC50 2.83 ± 0.32 μg/mL). Different bioactive functional groups, including hydroxyl (O-H), alkenyl (C=C), methylene (C-H), carbonyl (C=O), and secondary amine (N-H) groups, were detected by the multivariate analysis. These functional groups actively induced the alpha-glucosidase inhibition effect. This finding demonstrated the spectrum profile of the FTIR for the natural herb P. malayana Jack, further confirming its medicinal value. The developed validated model can be used to predict the AGI of P. malayana, which will be useful as a tool in the plant's quality control.
    Matched MeSH terms: Plant Extracts/chemistry*
  14. Huang TT, Lan YW, Chen CM, Ko YF, Ojcius DM, Martel J, et al.
    Sci Rep, 2019 03 26;9(1):5145.
    PMID: 30914735 DOI: 10.1038/s41598-019-41653-9
    We examined the effects of an Antrodia cinnamomea ethanol extract (ACEE) on lung cancer cells in vitro and tumor growth in vivo. ACEE produced dose-dependent cytotoxic effects and induced apoptosis in Lewis lung carcinoma (LLC) cells. ACEE treatment increased expression of p53 and Bax, as well as cleavage of caspase-3 and PARP, while reducing expression of survivin and Bcl-2. ACEE also reduced the levels of JAK2 and phosphorylated STAT3 in LLC cells. In a murine allograft tumor model, oral administration of ACEE significantly inhibited LLC tumor growth and metastasis without affecting serum biological parameters or body weight. ACEE increased cleavage of caspase-3 in murine tumors, while decreasing STAT3 phosphorylation. In addition, ACEE reduced the growth of human tumor xenografts in nude mice. Our findings therefore indicate that ACEE inhibits lung tumor growth and metastasis by inducing apoptosis and by inhibiting the STAT3 signaling pathway in cancer cells.
    Matched MeSH terms: Plant Extracts/chemistry
  15. Salehi B, Zakaria ZA, Gyawali R, Ibrahim SA, Rajkovic J, Shinwari ZK, et al.
    Molecules, 2019 Apr 07;24(7).
    PMID: 30959974 DOI: 10.3390/molecules24071364
    Piper species are aromatic plants used as spices in the kitchen, but their secondary metabolites have also shown biological effects on human health. These plants are rich in essential oils, which can be found in their fruits, seeds, leaves, branches, roots and stems. Some Piper species have simple chemical profiles, while others, such as Piper nigrum, Piper betle, and Piper auritum, contain very diverse suites of secondary metabolites. In traditional medicine, Piper species have been used worldwide to treat several diseases such as urological problems, skin, liver and stomach ailments, for wound healing, and as antipyretic and anti-inflammatory agents. In addition, Piper species could be used as natural antioxidants and antimicrobial agents in food preservation. The phytochemicals and essential oils of Piper species have shown strong antioxidant activity, in comparison with synthetic antioxidants, and demonstrated antibacterial and antifungal activities against human pathogens. Moreover, Piper species possess therapeutic and preventive potential against several chronic disorders. Among the functional properties of Piper plants/extracts/active components the antiproliferative, anti-inflammatory, and neuropharmacological activities of the extracts and extract-derived bioactive constituents are thought to be key effects for the protection against chronic conditions, based on preclinical in vitro and in vivo studies, besides clinical studies. Habitats and cultivation of Piper species are also covered in this review. In this current work, available literature of chemical constituents of the essential oils Piper plants, their use in traditional medicine, their applications as a food preservative, their antiparasitic activities and other important biological activities are reviewed.
    Matched MeSH terms: Plant Extracts/chemistry
  16. Tan DC, Quek A, Kassim NK, Ismail IS, Lee JJ
    Molecules, 2020 Nov 06;25(21).
    PMID: 33171900 DOI: 10.3390/molecules25215162
    Scopoletin has previously been reported as a biomarker for the standardization of Paederia foetida twigs. This study is the first report on the determination and quantification of scopoletin using quantitative nuclear magnetic resonance (qNMR) in the different extracts of Paederia foetida twigs. The validated qNMR method showed a good linearity (r2 = 0.9999), limit of detection (LOD) (0.009 mg/mL), and quantification (LOQ) (0.029 mg/mL), together with high stability (relative standard deviation (RSD) = 0.022%), high precision (RSD < 1%), and good recovery (94.08-108.45%). The quantification results of scopoletin concentration in chloroform extract using qNMR and microplate ultraviolet-visible (UV-vis) spectrophotometer was almost comparable. Therefore, the qNMR method is deemed accurate and reliable for quality control of Paederia foetida and other medicinal plants without extensive sample preparation.
    Matched MeSH terms: Plant Extracts/chemistry
  17. Sim YY, Nyam KL
    Food Chem, 2021 May 15;344:128582.
    PMID: 33199120 DOI: 10.1016/j.foodchem.2020.128582
    The electronic database was searched up to July 2020, using keywords, kenaf and roselle, chemical constituents of kenaf and roselle, therapeutic uses of kenaf and roselle. Journals, books and conference proceedings were also searched. Investigations of pharmacological activities of kenaf revealed that this edible plant exhibits a broad range of therapeutic potential including antioxidant, antimicrobial, antityrosinase, anticancer, antihyperlipidemia, antiulcer, anti-inflammatory, and hepatoprotective activities. Kenaf also showed versatile utility as a functional ingredient in food, folk medicine, and animal nutritions, as well as in nanotechnology processes. The exploitation of underexploited kenaf by-products can be a significant part of waste management from an economic and environmental point of view. In addition, kenaf showed comparable nutritional, phytochemical, and pharmacological properties with Hibiscus sabdariffa (Roselle). This review has important implications for further investigations and applications of kenaf in food and pharmaceuticals industry.
    Matched MeSH terms: Plant Extracts/chemistry
  18. Kaharudin FA, Zohdi RM, Mukhtar SM, Sidek HM, Bihud NV, Rasol NE, et al.
    J Ethnopharmacol, 2020 May 23;254:112657.
    PMID: 32045683 DOI: 10.1016/j.jep.2020.112657
    ETHNOPHARMACOLOGICAL RELEVANCE: Malaria, a devastating infectious disease which was initially recognized as episodic fever, is caused by parasitic protozoan of the genus Plasmodium. Medicinal plants with ethnobotanical information to treat fever and/or malaria has been the key element in identifying potential plant candidates for antimalarial screening. Goniothalamus lanceolatus Miq. (Annonaceae) is used as a folk remedy, particularly to treat fever and skin diseases.

    AIM OF THE STUDY: In this context, supported with previous preliminary data of its antiplasmodial activity, this study was undertaken to determine the in vitro antiplasmodial and cytotoxicity activities of G. lanceolatus crude extracts and its major compounds.

    MATERIALS AND METHODS: The in vitro antiplasmodial activity was determined by parasite lactate dehydrogenase (pLDH) assay on chloroquine-sensitive (3D7) and chloroquine-resistant (K1) strains of Plasmodium falciparum. The cytotoxicity activity was evaluated using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay on hepatocellular carcinoma (HepG2) and normal liver (WRL-68) cell lines.

    RESULTS: The root methanol extract possessed potent antiplasmodial activity against both P. falciparum 3D7 and K1 strains (IC50 = 2.7 μg/ml, SI = 140; IC50 = 1.7 μg/ml, SI = 236). Apart from the DCM extract of stem bark and root that were found to be inactive (IC50 > 50 μg/ml) against 3D7 strain, all other tested crude extracts exhibited promising (5< IC50  30 µg/ml, CC50 > 10 µM, respectively), except for the hexane and DCM extracts of root, which exerted mild cytotoxicity on HepG2 cell line (IC50 plant extract. It is also noteworthy, that the extract and compound were more active against chloroquine-resistant (K1) strain of P. falciparum. Further studies are being carried out to assess their toxicity profile and antimalarial efficacy in animal model.

    Matched MeSH terms: Plant Extracts/chemistry
  19. Gill MSA, Saleem H, Ahemad N
    Curr Top Med Chem, 2020;20(12):1093-1104.
    PMID: 32091334 DOI: 10.2174/1568026620666200224100219
    Natural Products (NP), specifically from medicinal plants or herbs, have been extensively utilized to analyze the fundamental mechanisms of ultimate natural sciences as well as therapeutics. Isolation of secondary metabolites from these sources and their respective biological properties, along with their lower toxicities and cost-effectiveness, make them a significant research focus for drug discovery. In recent times, there has been a considerable focus on isolating new chemical entities from natural flora to meet the immense demand for kinase modulators, and also to overcome major unmet medical challenges in relation to signal transduction pathways. The signal transduction systems are amongst the foremost pathways involved in the maintenance of life and protein kinases play an imperative part in these signaling pathways. It is important to find a kinase inhibitor, as it can be used not only to study cell biology but can also be used as a drug candidate for cancer and metabolic disorders. A number of plant extracts and their isolated secondary metabolites such as flavonoids, phenolics, terpenoids, and alkaloids have exhibited activities against various kinases. In the current review, we have presented a brief overview of some important classes of plant secondary metabolites as kinase modulators. Moreover, a number of phytocompounds with kinase inhibition potential, isolated from different plant species, are also discussed.
    Matched MeSH terms: Plant Extracts/chemistry
  20. Nugroho AE, Sasaki T, Kaneda T, Hadi AHA, Morita H
    Bioorg Med Chem Lett, 2017 May 15;27(10):2124-2128.
    PMID: 28389148 DOI: 10.1016/j.bmcl.2017.03.071
    Vasorelaxation activity guided separation of the methanol extract of Calophyllum scriblitifolium bark led to the isolation of 6 chromanones (calofolic acids A-F, 1-6). Their structures were elucidated by 1D and 2D NMR spectroscopy, and their absolute configurations were investigated by a combination of CD spectroscopy and DFT calculation. All isolated chromanones showed dose-dependent vasorelaxation activity on isolated rat aorta.
    Matched MeSH terms: Plant Extracts/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links