Displaying publications 61 - 80 of 2472 in total

Abstract:
Sort:
  1. Nordin MA, Wan Harun WH, Abdul Razak F
    BMC Complement Altern Med, 2013 Dec 04;13:342.
    PMID: 24305010 DOI: 10.1186/1472-6882-13-342
    BACKGROUND: Candida species have been associated with the emergence of resistant strains towards selected antifungal agents. Plant products have been used traditionally as alternative medicine to ease candidal infections. The present study was undertaken to investigate the antifungal susceptibility patterns and growth inhibiting effect of Brucea javanica seeds extract against Candida species.

    METHODS: A total of seven Candida strains that includes Candida albicans ATCC14053, Candida dubliniensis ATCCMYA-2975, Candida glabrata ATCC90030, Candida krusei ATCC14243, Candida lusitaniae ATCC64125, Candida parapsilosis ATCC22019 and Candida tropicalis ATCC13803 were used in this study. The antifungal activity, minimum inhibitory concentration and minimum fungicidal concentration of B. javanica extract were evaluated. Each strain was cultured in Yeast Peptone Dextrose broth under four different growth environments; (i) in the absence and presence of B. javanica extract at respective concentrations of (ii) 1 mg/ml (iii) 3 mg/ml and (iv) 6 mg/ml. The growth inhibitory responses of the candidal cells were determined based on changes in the specific-growth rates (μ) and doubling time (g). The values in the presence of extract were computed as percentage in the optical density relative to that of the total cells suspension in the absence of extract.

    RESULTS: B. javanica seeds extract exhibited antifungal properties. C. tropicalis showed the highest growth rate; 0.319 ± 0.002 h(-1), while others were in the range of 0.141 ± 0.001 to 0.265 ± 0.005 h(-1). In the presence of extract, the lag and log phases were extended and deviated the μ- and g-values. B. javanica extract had significantly reduced the μ-values of C. dubliniensis, C. krusei and C. parapsilosis at more than 80% (ρ 

    Matched MeSH terms: Plant Extracts/pharmacology*
  2. Nordin MA, Wan Harun WH, Abdul Razak F
    Arch Oral Biol, 2013 Oct;58(10):1335-42.
    PMID: 23915676 DOI: 10.1016/j.archoralbio.2013.07.001
    The adherence of Candida to mucosal surfaces is the initial step for successful invasive process of the oral cavity. The study aimed to investigate the effect of two plant extracts on the non-specific and specific bindings of oral candida.
    Matched MeSH terms: Plant Extracts/pharmacology*
  3. Jameel RA, Khan SS, Kamaruddin MF, Abd Rahim ZH, Bakri MM, Abdul Razak FB
    J Coll Physicians Surg Pak, 2014 Oct;24(10):757-62.
    PMID: 25327922 DOI: 10.2014/JCPSP.757762
    The aim of the review was to critically appraise the various pros and cons of the synthetic and herbal agents used in mouthwashes against halitosis and facilitate users to choose appropriate mouthwashes according to their need. Oral Malodour (OMO) or halitosis is a global epidemic with social and psychological impact. Use of mouthwash has been adopted worldwide to control halitosis within a past few decades. Alcohol and Chlorhexidine are common agents in synthetic mouthwashes, while Tannins and Eugenol are derived traditional herbal extracts. Each agent signifies some unique properties distinguishing them from others. Herbal ingredients are gaining the attention of the profession due to its mild side effects and competitive results. Herbal mouthwashes can be a safer choice in combating OMO, as an alternate to synthetic mouthwashes.
    Matched MeSH terms: Plant Extracts/therapeutic use*
  4. Joseph J, Khor KZ, Moses EJ, Lim V, Aziz MY, Abdul Samad N
    Int J Nanomedicine, 2021;16:3599-3612.
    PMID: 34079252 DOI: 10.2147/IJN.S303921
    Purpose: Vernonia amygdalina (VA) is a traditional African herbal medicine that has been reported to possess anticancer properties. However, the anticancer properties of VA silver nanoparticles have not been studied. The aim of the study was to examine and evaluate the anticancer activities of VA leaf extracts and VA silver nanoparticles on the human breast cancer cell line, MCF-7.

    Methods: VA leaves were extracted using sequential extraction assisted with ultrasound using three different solvents: ethanol, 50% ethanol, and deionized water. The silver nanoparticles were synthesised with VA aqueous extract.

    Results: The ethanol extract and VA silver nanoparticles inhibit MCF-7 cell proliferation with an average half-maximal inhibitory concentration (IC50) value of 67µg/mL and 6.11µg/mL, respectively, after 72 hours of treatment. The ethanol extract and VA silver nanoparticles also caused G1 phase cell cycle arrest, induced apoptosis and nuclear fragmentation in MCF-7 cells.

    Conclusion: VA ethanol extracts and VA silver nanoparticles decreased the cell viability in MCF-7 cells in a time and dose-dependent manner by inducing apoptosis and causing DNA damage. Further research is needed to elucidate the mechanism of action of VA leaf extracts and VA silver nanoparticles. This study is the first to report on the anticancer activity of VA silver nanoparticles in MCF-7 cells.

    Matched MeSH terms: Plant Extracts/chemistry*
  5. Jalal TK, Ahmed IA, Mikail M, Momand L, Draman S, Isa ML, et al.
    Appl Biochem Biotechnol, 2015 Apr;175(7):3231-43.
    PMID: 25649443 DOI: 10.1007/s12010-015-1499-0
    Artocarpus altilis (breadfruit) pulp, peel and whole fruit were extracted with various solvents such as hexane, dichloromethane (DCM) and methanol. The antioxidant activity of these extracts were examined using the stable 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging test. IC50 was 55 ± 5.89 μg/ml for the pulp part of methanol extract. In the β-carotene bleaching assay, the antioxidant activity was 90.02 ± 1.51 % for the positive control (Trolox) and 88.34 ± 1.31 % for the pulp part of the fruit methanol extract. The total phenolic content of the crude extracts was determined using the Folin-Ciocalteu procedure; methanol pulp part demonstrated the highest phenol content value of 781 ± 52.97 mg GAE/g of dry sample. While the total flavonoid content was determined using the aluminium chloride colorimetric assay, the highest value of 6213.33 ± 142.22 mg QE/g was indicated by pulp part of the fruit methanol extract. The antimicrobial activity of the crude extracts was tested using disc diffusion method against pathogenic microorganisms: Staphylococcus aureus, Staphylococcus epidermidis, Bacillus cereus, Salmonella typhimurium, Escherichia coli, Klebsiella pneumonia and Candida albicans. Methanol extract of pulp part was recorded to have the highest zone of inhibition against Gram-positive and Gram-negative bacteria. The minimum inhibitory concentration (MIC) and MBC/minimal fungicidal concentration (MFC) for the extracts were also determined using the microdilution method ranging from 4000 to 63 μg/ml against pathogenic microbes. The MBC/MFC values varied from 250 to 4000 μg/ml. A correlation between antioxidant activity assays, antimicrobial activity and phenolic content was established. The results shows that the various parts of A. altilis fruit extracts promising antioxidant activities have potential bioactivities due to high content of phenolic compounds.
    Matched MeSH terms: Plant Extracts/pharmacology*; Plant Extracts/chemistry
  6. Jalal TK, Khan AYF, Natto HA, Abdull Rasad MSB, Arifin Kaderi M, Mohammad M, et al.
    Nutr Cancer, 2019;71(5):792-805.
    PMID: 30614285 DOI: 10.1080/01635581.2018.1516790
    Nine phenolic compounds were identified and quantified in Artocarpus altilia fruit. One of the main compounds was quercetin, which is the major class of flavonoids has been identified and quantified in pulp part of A. altilis fruit of methanol extract. The aim of this study was to evaluate in vitro cytotoxic assay. Inhibitory concentration 50% concentration was determined using trypan blue exclusion assay. Apoptosis induction and cell cycle regulation were studied by flow cytometric analysis. The expression of apoptosis and cell cycle-related regulatory genes were assessed by RT-qPCR study of the methanol extract of pulp part on human lung carcinoma (A549) cell line. A significant increase of cells at G2/M phases was detected (P 
    Matched MeSH terms: Plant Extracts/pharmacology*
  7. Baharuddin NS, Abdullah H, Abdul Wahab WN
    J Pharm Bioallied Sci, 2015 Jan-Mar;7(1):15-20.
    PMID: 25709331 DOI: 10.4103/0975-7406.148742
    Galls of Quercus infectoria have been traditionally used to treat common ailments, including yeast infections caused by Candida species.
    Matched MeSH terms: Plant Extracts
  8. Wan Ya, W. N., Mohsin, H. F., Abdul Wahab, I.
    MyJurnal
    Introduction: Acalypha indica is commonly referred to as “pokok kucing galak”. It is an herbaceous species that grow along the earth’s equator line, including the wet, temperate and tropical regions. Domestic cats experience the effect of this plant by reacting very favorably to the root. The first compilation of the ethnopharmacology and phytochemistry of the Acalypha plants was published. This genus is the fourth largest genus of the Euphorbiaceae family, with about 500 species. However, the review only represents about one third of the species from the Acalypha genus. Methods: Hence, this study is performed to obtain updates on the biochemistry of this plant, via literature search. Results: From the articles, almost every part of the plant, including the leaves, stems and roots, are used as traditional remedies. Local people consume the plant for therapeutic purposes such as anthelminthic, anti-ulcer, anti-bacteria, anti-microbial and wound healing. In homeopathy practice, it is used for asthma and bronchitis. Nevertheless,
    there is still a potential risk of using A. indica. It was reported that this traditional medicine could induce Intravascular haemolysis in patients with a glucose-6-phosphate-dehydrogenase (G6PD) deficiency. Clinical evaluations of Acalypha extract could be utilized to justify the ethnomedicinal claims and for the safety of its therapeutic applications. Meanwhile, there is an increase in the phytochemical and chromatographic experiments of A. indica that could introduce the extract’s role in pharmaceutical, nutraceutical, zoology and veterinary fields. It contains secondary metabolites, including dihydroactinidiolide; a terpenoid, alkaloids, flavonoids and steroids, for example, brassicasterol. Conclusion: The finding of this review concludes that Acalypha is a natural source, worth to be further investigated. It is hoped that new biologically active constituents could be discovered, since only few Acalypha species were comprehensively studied.
    Matched MeSH terms: Plant Extracts
  9. Andriani Y, Tengku-Muhammad TS, Mohamad H, Saidin J, Syamsumir DF, Chew GS, et al.
    Molecules, 2015 Mar 09;20(3):4410-29.
    PMID: 25759957 DOI: 10.3390/molecules20034410
    In vitro and in vivo studies of the activity of Phaleria macrocarpa Boerl (Thymelaeaceae) leaves against the therapeutic target for hypercholesterolemia were done using the HDL receptor (SR-BI) and hypercholesterolemia-induced Sprague Dawley rats. The in vitro study showed that the active fraction (CF6) obtained from the ethyl acetate extract (EMD) and its component 2',6',4-trihydroxy-4'-methoxybenzophenone increased the SR-BI expression by 95% and 60%, respectively. The in vivo study has proven the effect of EMD at 0.5 g/kgbw dosage in reducing the total cholesterol level by 224.9% and increasing the HDL cholesterol level by 157% compared to the cholesterol group. In the toxicity study, serum glutamate oxalate transaminase (SGOT) and serum glutamate pyruvate transaminase (SGPT) activity were observed to be at normal levels. The liver histology also proved no toxicity and abnormalities in any of the treatment groups, so it can be categorized as non-toxic to the rat liver. The findings taken together show that P. macrocarpa leaves are safe and suitable as an alternative control and prevention treatment for hypercholesterolemia in Sprague Dawley rats.
    Matched MeSH terms: Plant Extracts/administration & dosage*; Plant Extracts/pharmacology; Plant Extracts/chemistry*
  10. Kong KW, Mat-Junit S, Ismail A, Aminudin N, Abdul-Aziz A
    Food Chem, 2014 Mar 1;146:85-93.
    PMID: 24176317 DOI: 10.1016/j.foodchem.2013.09.012
    The polyphenolic profiles and antioxidant activities of the water extracts of Barringtonia racemosa shoots (leaves and stems) were explored. Two methods, freeze drying and air drying, for preparation of the shoots, were also compared. Freeze drying was better as air drying caused 5-41% reduction of polyphenols. Three phenolic acids and three flavonoids were identified, using UHPLC. The descending order of polyphenols in the leaves and stems was gallic acid>ellagic acid>quercetin>protocatechuic acid>rutin>kaempferol. In vitro antioxidant analyses were performed using biological samples. In the LDL oxidation assay, B. racemosa leaf extract (IC50=73.0μg/ml) was better than stem extract (IC50=226μg/ml) at inhibiting the formation of TBARS and lipid hydroperoxides. Similar trends were observed for serum and haemoglobin oxidation. B. racemosa leaf extract was better than its stem extract in delaying the time required to oxidise haemoglobin to methaemoglobin. The high polyphenolic content of B. racemosa shoots could have contributed towards their antioxidative effects.
    Matched MeSH terms: Plant Extracts/chemistry*
  11. Abrahim NN, Kanthimathi MS, Abdul-Aziz A
    BMC Complement Altern Med, 2012 Nov 15;12:220.
    PMID: 23153283 DOI: 10.1186/1472-6882-12-220
    BACKGROUND: Breast cancer is the most common form of cancer and the focus on finding chemotherapeutic agents have recently shifted to natural products. Piper betle is a medicinal plant with various biological activities. However, not much data is available on the anti-cancer effects of P. betle on breast cancer. Due to the current interest in the potential effects of antioxidants from natural products in breast cancer treatment, we investigated the antioxidant activities of the leaves of P. betle and its inhibitory effect on the proliferation of the breast cancer cell line, MCF-7.

    METHODS: The leaves of P. betle were extracted with solvents of varying polarities (water, methanol, ethyl acetate and hexane) and their phenolic and flavonoid content were determined using colorimetric assays. Phenolic composition was characterized using HPLC. Antioxidant activities were measured using FRAP, DPPH, superoxide anion, nitric oxide and hyroxyl radical scavenging assays. Biological activities of the extracts were analysed using MTT assay and antioxidant enzyme (catalase, superoxide dismutase, glutathione peroxidase) assays in MCF-7 cells.

    RESULTS: Overall, the ethyl acetate extract showed the highest ferric reducing activity and radical scavenging activities against DPPH, superoxide anion and nitric oxide radicals. This extract also contained the highest phenolic content implying the potential contribution of phenolics towards the antioxidant activities. HPLC analyses revealed the presence of catechin, morin and quercetin in the leaves. The ethyl acetate extract also showed the highest inhibitory effect against the proliferation of MCF-7 cells (IC50=65 μg/ml). Treatment of MCF-7 cells with the plant extract increased activities of catalase and superoxide dismutase.

    CONCLUSIONS: Ethyl acetate is the optimal solvent for the extraction of compounds with antioxidant and anti-proliferative activities. The increased activities of catalase and superoxide dismutase in the treated cells could alter the antioxidant defense system, potentially contributing towards the anti-proliferative effect. There is great potential for the ethyl acetate extract of P. betle leaf as a source of natural antioxidants and to be developed as therapeutics in cancer treatment.

    Matched MeSH terms: Plant Extracts/pharmacology*
  12. Al-Rofaai A, Rahman WA, Abdulghani M
    Parasitol Res, 2013 Feb;112(2):893-8.
    PMID: 22961237 DOI: 10.1007/s00436-012-3113-5
    The sensitivity of larval paralysis assay (LPA) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide-formazan (MTT-formazan) assay was compared to evaluate the anthelmintic activity of plant extracts. In this study, the methanolic extract of Azadirachta indica (neem) was evaluated for its activity against the infective-stage larvae (L(3)) of susceptible and resistant Haemonchus contortus strains using the two aforementioned assays. In both in vitro assays, the same serial concentrations of the extract were used, and the median lethal concentrations were determined to compare the sensitivity of both assays. The results revealed a significant difference (P < 0.05) in the sensitivity of the LPA and the MTT-formazan assay. The MTT-formazan assay is more feasible for practical applications because it measured the L(3) mortality more accurately than LPA. This study may help find a suitable assay for investigating the anthelmintic activity of plant extracts against trichostrongylid nematodes.
    Matched MeSH terms: Plant Extracts/isolation & purification; Plant Extracts/pharmacology*
  13. Abd Hamid H, Mutazah R, Yusoff MM, Abd Karim NA, Abdull Razis AF
    Food Chem Toxicol, 2017 Oct;108(Pt B):451-457.
    PMID: 27725206 DOI: 10.1016/j.fct.2016.10.004
    Rhodomyrtus tomentosa (Aiton) Hassk. has a wide spectrum of pharmacological effects and has been used to treat wounds, colic diarrhoea, heartburns, abscesses and gynaecopathy. The potential antiproliferative activities of R. tomentosa extracts from different solvents were evaluated in vitro on HepG2, MCF-7 and HT 29 cell lines while antioxidant activity was monitored by radical scavenging assay (DPPH), copper reducing antioxidant capacity (CUPRAC) and β-carotene bleaching assay. Extracts from R. tomentosa show the viability of the cells in concentration-dependent manner. According to the IC50 obtained, the ethyl acetate extracts showed significant antiproliferative activity on HepG2 (IC50 11.47 ± 0.280 μg/mL), MCF-7 (IC50 2.68 ± 0.529 μg/mL) and HT 29 (IC50 16.18 ± 0.538 μg/mL) after 72 h of treatment. Bioassay guided fractionation of the ethyl acetate extract led to the isolation of lupeol. Methanol extracts show significant antioxidant activities in DPPH (EC50 110.25 ± 0.005 μg/ml), CUPRAC (EC50 53.84 ± 0.004) and β-carotene bleaching (EC50 58.62 ± 0.001) due to the presence of high total flavonoid and total phenolic content which were 110.822 ± 0.017 mg butylated hydroxytoluene (BHT)/g and 190.467 ± 0.009 mg gallic acid (GAE)/g respectively. Taken together, the results extracts show the R. tomentosa as a potential source of antioxidant and antiproliferative efficacy.
    Matched MeSH terms: Plant Extracts/pharmacology*; Plant Extracts/chemistry
  14. Abdulwanis Mohamed Z, Mohamed Eliaser E, Jaafaru MS, Nordin N, Ioannides C, Abdull Razis AF
    Molecules, 2020 Aug 15;25(16).
    PMID: 32824120 DOI: 10.3390/molecules25163724
    Neurodegenerative diseases (NDDs) are chronic conditions that have drawn robust interest from the scientific community. Phytotherapeutic agents are becoming an important source of chemicals for the treatment and management of NDDs. Various secondary metabolites have been isolated from Melicope lunu-ankenda plant leaves, including phenolic acid derivatives. However, their neuroprotective activity remains unclear. Thus, the aim of this study is to elucidate the in vitro neuroprotective activity of 7-geranyloxycinnamic acid isolated from Melicope lunu-ankenda leaves. The neuroprotective activity was evaluated in differentiated human neuroblastoma (SH-SY5Y) cells by monitoring cell viability using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Moreover, the potential to impair apoptosis in differentiated cells was investigated employing the Annexin V-FITC assay, acridine orange and propidium iodide (AO/PI) staining, and fluorescence microscopy. Morphological assessment and ultrastructural analysis were performed using scanning and transmission electron microscopy to evaluate the effect of 7-geranyloxycinnamic acid on surface morphology and internal features of the differentiated cells. Pre-treatment of neuronal cells with 7-geranyloxycinnamic acid significantly protected the differentiated SH-SY5Y cells against H2O2-induced apoptosis. Cytoskeleton and cytoplasmic inclusion were similarly protected by the 7-geranyloxycinnamic acid treatment. The present findings demonstrate the neuroprotective potential of 7-geranyloxycinnamic acid against H2O2-induced neurotoxicity in neuronal cells, which is an established hallmark of neuronal disorders.
    Matched MeSH terms: Plant Extracts/pharmacology*
  15. Ahmad R, Vaali-Mohammed MA, Elwatidy M, Al-Obeed O, Al-Khayal K, Eldehna WM, et al.
    Int J Mol Med, 2019 Jul 23.
    PMID: 31364730 DOI: 10.3892/ijmm.2019.4284
    The emergence of colorectal cancer in developed nations can be attributed to dietary habits, smoking, a sedentary lifestyle and obesity. Several treatment regimens are available for primary and metastatic colorectal cancer; however, these treatment options have had limited impact on cure and disease‑free survival, and novel agents need to be developed for treating colorectal cancer. Thus, the objective of this study was to explore the anticancer mechanism of a benzo(1,3)dioxol‑based derivative of sulfonamide. The compound's inhibitory effect on cell proliferation was determined using the MTT assay and the xCelligence RTDP machine. Alternations in the expression of Bcl‑2 and inhibitor of apoptosis protein families were detected by western blotting. Apoptotic marker protein expression, including cytochrome c and cleaved poly(ADP‑ribose)polymerase was measured in the cytosolic extract of cells. Apoptosis and necrosis were detected by flow cytometry and immunofluorescence. Reactive oxygen species (ROS), and activation of caspase‑3 and caspase‑7 were measured using flow cytometry. Activation of the JNK pathway was detected by western blotting. We investigated the molecular mechanism of action of the sulfonamide derivative on colorectal cancer cells and found that the compound possesses a potent anticancer effect, which is primarily exerted by inducing apoptosis and necrosis. Interestingly, this compound exhibited little antiproliferative effect against the normal colonic epithelial cell line FHC. Furthermore, our results showed that the compound could significantly increase ROS production. Apoptosis induction could be attenuated by the free oxygen radical scavenger N‑acetyl cysteine (NAC), indicating that the antiproliferative effect of this compound on colorectal cancer cells is at least partially dependent on the redox balance. In addition, JNK signaling was activated by treatment with this derivative, which led to the induction of apoptosis. On the contrary, a JNK inhibitor could suppress the cell death induced by this compound. Our findings thus suggested a novel anticancer mechanism of a benzo(1,3)dioxol‑based derivative of sulfonamide for colorectal cancer cells and may have therapeutic potential for the treatment of colorectal cancer; however, further investigation is required.
    Matched MeSH terms: Plant Extracts
  16. Al-Henhena N, Ying RP, Ismail S, Najm W, Najm W, Khalifa SA, et al.
    PLoS One, 2014;9(11):e111118.
    PMID: 25390042 DOI: 10.1371/journal.pone.0111118
    Andrographis paniculata is a grass-shaped medicinal herb, traditionally used in Southeast Asia. The aim of this study was to evaluate the chemoprotective effects of A. paniculata on colorectal cancer. A. paniculata ethanol extract was tested on azoxymethane (AOM)-induced aberrant crypt foci (ACF) in vivo and in vitro. A. paniculata treated groups showed a significant reduction in the number of ACF of the treated rats. Microscopically, ACF showed remarkably elongated and stratified cells, and depletion of the submucosal glands of AOM group compared to the treated groups. Histologically, staining showed slightly elevated masses above the surrounding mucosa with oval or slit-like orifices. Immunohistochemically, expression of proliferating cell nuclear antigen (PCNA) and β-catenin protein were down-regulated in the A. paniculata treated groups compared to the AOM group. When colon tissue was homogenized, malondialdehyde (MDA) and nitric oxide (NO) levels were significantly decreased, whereas superoxide dismutase (SOD) activity was increased in the treated groups compared to the AOM group. A. paniculata ethanol extract showed antioxidant and free radical scavenging activity, as elucidated by the measure of oxidative stress markers. Further, the active fractions were assessed against cell lines of CCD841 and HT29 colon cancer cells.
    Matched MeSH terms: Plant Extracts/chemistry*
  17. Abdulaziz Bardi D, Halabi MF, Hassandarvish P, Rouhollahi E, Paydar M, Moghadamtousi SZ, et al.
    PLoS One, 2014;9(10):e109424.
    PMID: 25280007 DOI: 10.1371/journal.pone.0109424
    This study investigated the hepatoprotective effects of ethanolic Andrographis paniculata leaf extract (ELAP) on thioacetamide-induced hepatotoxicity in rats. An acute toxicity study proved that ELAP is not toxic in rats. To examine the effects of ELAP in vivo, male Sprague Dawley rats were given intraperitoneal injections of vehicle 10% Tween-20, 5 mL/kg (normal control) or 200 mg/kg TAA thioacetamide (to induce liver cirrhosis) three times per week. Three additional groups were treated with thioacetamide plus daily oral silymarin (50 mg/kg) or ELAP (250 or 500 mg/kg). Liver injury was assessed using biochemical tests, macroscopic and microscopic tissue analysis, histopathology, and immunohistochemistry. In addition, HepG2 and WRL-68 cells were treated in vitro with ELAP fractions to test cytotoxicity. Rats treated with ELAP exhibited significantly lower liver/body weight ratios and smoother, more normal liver surfaces compared with the cirrhosis group. Histopathology using Hematoxylin and Eosin along with Masson's Trichrome stain showed minimal disruption of hepatic cellular structure, minor fibrotic septa, a low degree of lymphocyte infiltration, and minimal collagen deposition after ELAP treatment. Immunohistochemistry indicated that ELAP induced down regulation of proliferating cell nuclear antigen. Also, hepatic antioxidant enzymes and oxidative stress parameters in ELAP-treated rats were comparable to silymarin-treated rats. ELAP administration reduced levels of altered serum liver biomarkers. ELAP fractions were non-cytotoxic to WRL-68 cells, but possessed anti-proliferative activity on HepG2 cells, which was confirmed by a significant elevation of lactate dehydrogenase, reactive oxygen species, cell membrane permeability, cytochrome c, and caspase-8,-9, and, -3/7 activity in HepG2 cells. A reduction of mitochondrial membrane potential was also detected in ELAP-treated HepG2 cells. The hepatoprotective effect of 500 mg/kg of ELAP is proposed to result from the reduction of thioacetamide-induced toxicity, normalizing reactive oxygen species levels, inhibiting cellular proliferation, and inducing apoptosis in HepG2 cells.
    Matched MeSH terms: Plant Extracts/pharmacology*
  18. Almagrami AA, Alshawsh MA, Saif-Ali R, Shwter A, Salem SD, Abdulla MA
    PLoS One, 2014;9(5):e96004.
    PMID: 24819728 DOI: 10.1371/journal.pone.0096004
    Acanthus ilicifolius, a mangrove medicinal plant, is traditionally used to treat a variety of diseases. The aim of this research is to assess the chemoprotective outcomes of A. ilicifolius ethanolic extract against azoxymethane (AOM) induced colonic aberrant crypt foci (ACF) in rats.
    Matched MeSH terms: Plant Extracts/therapeutic use*; Plant Extracts/chemistry
  19. Rahim NA, Hassandarvish P, Golbabapour S, Ismail S, Tayyab S, Abdulla MA
    Biomed Res Int, 2014;2014:416409.
    PMID: 24783203 DOI: 10.1155/2014/416409
    Herbal medicines appeared promising in prevention of many diseases. This study was conducted to investigate the gastroprotective effect of Curcuma xanthorrhiza leaf in the rats induced gastric ulcer by ethanol. Normal and ulcer control received carboxymethycellulose (5 mL/kg) orally, positive control was administered with 20 mg/kg omeprazole (reference drug) and 2 groups were received 250 mg/kg and 500 mg/kg of the leaf extract, respectively. To induce of gastric ulcers formation, ethanol (5 mL/kg) was given orally to all groups except normal control. Gross ulcer areas, histology, and amount of prostaglandin E2, superoxide dismutase and malondialdehyde were assessed to determine the potentiality of extract in prevention against gastric ulcers. Oral administration of extract showed significant gastric protection effect as the ulcer areas was remarkably decreased. Histology observation showed less edema and leucocytes infiltration as compared with the ulcer control which exhibited severe gastric mucosa injury. Furthermore, the leaf extract elevated the mucus weight, level of prostaglandin E2 and superoxide dismutase. The extract also reduced malondialdehyde amount significantly. Results showed leaf extract of Curcuma xanthorrhiza can enhanced the gastric protection and sustained the integrity of gastric mucosa structure. Acute toxicity test did not showed any sign of toxicity (2 g/kg and 5 g/kg).
    Matched MeSH terms: Plant Extracts/administration & dosage*; Plant Extracts/chemistry
  20. Shwter AN, Abdullah NA, Alshawsh MA, Alsalahi A, Hajrezaei M, Almaqrami AA, et al.
    J Ethnopharmacol, 2014 Feb 12;151(3):1194-1201.
    PMID: 24393787 DOI: 10.1016/j.jep.2013.12.044
    ETHNOPHARMACOLOGICAL RELEVANCE: Gynura procumbens is commonly used as a traditional medicinal plant in Malaysia for treatment of many diseases. To investigate the chemopreventive properties of Gynura procumbens on azoxymethane (AOM)-induced aberrant crypt foci (ACF) in rats.

    METHODS: Five groups of adult male rats were used in this experiment. Normal/control group; the rats were injected subcutaneously with 15 mg/kg of sterile normal saline once a week for two weeks, and orally administered with 10% Tween 20 (5 mL/kg). Carcinogen and treatment groups; the rats were injected subcutaneously each with 15 mg/kg body weight AOM once a week for 2 weeks and were continued to be fed for two months, respectively with 10% Tween 20, 500 and 250mg/kg body weight plant extracts. Reference group; the rats were injected subcutaneously with 15 mg/kg body weight AOM once a week for 2 weeks, and injected intraperitoneally with fluorouracil 35 mg/kg body weight for five consecutive days.

    RESULT: Total ACF detected in methylene blue stained whole mounts of rat colon were 21, 23and 130 in rats fed with 500, 250 mg/kg body weight treatment and carcinogen groups, respectively. Treatment with high and low doses of the plant extract led to83.6% and 82.2% decrease in the total crypts in the groups fed 500 mg/kg and 250 mg/kg Gynura procumbens respectively compared to carcinogen group. Immunohistochemical staining of ACF showed suppressed azoxymethane induced colonic cell proliferation and Bcl-2 expression. Glutathione-S-transfarase and superoxide dismutase activities were higher in treated rats compared to carcinogen groups.

    CONCLUSION: Gynura procumbens reduced the incidence of AOM induced ACF. The findings showed that Gynura procumbens may have antiproliferative and antioxidative properties. Moreover, Gynura procumbens possesses the medicinal properties to prevent colon cancer.

    Matched MeSH terms: Plant Extracts/therapeutic use*; Plant Extracts/toxicity; Plant Extracts/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links