Displaying publications 101 - 120 of 244 in total

Abstract:
Sort:
  1. Ahmad A, Siddique JA, Laskar MA, Kumar R, Mohd-Setapar SH, Khatoon A, et al.
    J Environ Sci (China), 2015 May 1;31:104-23.
    PMID: 25968265 DOI: 10.1016/j.jes.2014.12.008
    The direct determination of toxic metal ions, in environmental samples, is difficult because of the latter's presence in trace concentration in association with complex matrices, thereby leading to insufficient sensitivity and selectivity of the methods used. The simultaneous removal of the matrix and preconcentration of the metal ions, through solid phase extraction, serves as the promising solution. The mechanism involved in solid phase extraction (SPE) depends on the nature of the sorbent and analyte. Thus, SPE is carried out by means of adsorption, ion exchange, chelation, ion pair formation, and so forth. As polymeric supports, the commercially available Amberlite resins have been found very promising for designing chelating matrices due to its good physical and chemical properties such as porosity, high surface area, durability and purity. This review presents an overview of the various works done on the modification of Amberlite XAD resins with the objective of making it an efficient sorbent. The methods of modifications which are generally based on simple impregnation, sorption as chelates and chemical bonding have been discussed. The reported results, including the preconcentration limit, the detection limit, sorption capacity, preconcentration factors etc., have been reproduced.
    Matched MeSH terms: Polymers/chemistry
  2. Benhamou K, Kaddami H, Magnin A, Dufresne A, Ahmad A
    Carbohydr Polym, 2015 May 20;122:202-11.
    PMID: 25817660 DOI: 10.1016/j.carbpol.2014.12.081
    Novel bio-based polyurethane (PU) nanocomposites composed of cellulose nanofiller extracted from the rachis of date palm tree and polycaprolactone (PCL) diol based PU were prepared by casting/evaporation. Two types of nanofiber were used: cellulose nanofibrils (CNFs) and cellulose nanocrystals (CNCs). The mechanical and thermal properties of the nanocomposite films were studied by DMA, DSC, and tensile tests and the morphology was investigated by SEM. Bionanocomposites presented good mechanical properties in comparison to neat PU. While comparing both nanofillers, the improvement in mechanical and thermal properties was more pronounced for the nanocomposites based on CNF which could be explained, not only by the higher aspect ratio of CNF, but also by their better dispersion in the PU matrix. Calculation of the solubility parameters of the nanofiller surface polymers and of the PU segments portend a better interfacial adhesion for CNF based nanocomposites compared to CNC.
    Matched MeSH terms: Polymers/chemistry*
  3. Suah FB, Ahmad M, Heng LY
    PMID: 25748985 DOI: 10.1016/j.saa.2015.02.068
    A novel approach for the determination of Al(3+) from aqueous samples was developed using an optode membrane produced by physical inclusion of Al(3+) selective reagent, which is morin into a plasticized poly(vinyl chloride). The inclusion of Triton X-100 was found to be valuable and useful for enhancing the sorption of Al(3+) ions from liquid phase into the membrane phase, thus increasing the intensity of optode's absorption. The optode showed a linear increase in the absorbance at λ(max)=425 nm over the concentration range of 1.85×10(-6)-1.1×10(-4) mol L(-1) (0.05-3 μg mL(-1)) of Al(3+) ions in aqueous solution after 5 min. The limit of detection was determined to be 1.04×10(-6) mol L(-1) (0.028 μg mL(-1)). The optode developed in the present work was easily prepared and found to be stable, has good mechanical strength, sensitive and reusable. In addition, the optode was tested for Al(3+) determination in lake water, river water and pharmaceutical samples, which the result was satisfactory.
    Matched MeSH terms: Polymers/chemistry*
  4. Yellepeddi VK, Sheshala R, McMillan H, Gujral C, Jones D, Raghu Raj Singh T
    Drug Discov Today, 2015 Jul;20(7):884-9.
    PMID: 25668579 DOI: 10.1016/j.drudis.2015.01.013
    Punctal plugs (PPs) are miniature medical implants that were initially developed for the treatment of dry eyes. Since their introduction in 1975, many PPs made from different materials and designs have been developed. PPs, albeit generally successful, suffer from drawbacks such as epiphora and suppurative canaliculitis. To overcome these issues intelligent designs of PPs were proposed (e.g. SmartPLUG™ and Form Fit™). PPs are also gaining interest among pharmaceutical scientists for sustaining drug delivery to the eye. This review aims to provide an overview of PPs for dry eye treatment and drug delivery to treat a range of ocular diseases. It also discusses current challenges in using PPs for ocular diseases.
    Matched MeSH terms: Polymers/chemistry*
  5. Amin MC, Ahmad N, Pandey M, Abeer MM, Mohamad N
    Expert Opin Drug Deliv, 2015 Jul;12(7):1149-61.
    PMID: 25547588 DOI: 10.1517/17425247.2015.997707
    Supramolecular hydrogels, formed by noncovalent crosslinking of polymeric chains in water, constitute an interesting class of materials that can be developed specifically for drug delivery and biomedical applications. The biocompatibility, stimuli responsiveness to various external factors, and powerful functionalization capacity of these polymeric networks make them attractive candidates for novel advanced dosage form design.
    Matched MeSH terms: Polymers/chemistry*
  6. Mamat NA, See HH
    J Chromatogr A, 2015 Aug 7;1406:34-9.
    PMID: 26141273 DOI: 10.1016/j.chroma.2015.06.020
    In this work, a new variation of the electromembrane extraction (EME) approach employing a hollow polymer inclusion membrane (HPIM) was developed. In this method, a HPIM was prepared by casting a solution of the desired proportions of cellulose acetate (CTA), tris(2-ethylhexyl)phosphate (TEHP) and di-(2-ethylhexyl)phosphoric acid (D2EHPA) in dichloromethane on glass capillary tubing. Three basic drugs namely amphetamine, methamphetamine, and 3,4-methylenedioxy-N-methylamphetamine (MDMA) were selected as model analytes to evaluate the extraction performance of this new approach. The drugs were extracted from human plasma samples, through a 20μm thickness HPIM, to an aqueous acceptor solution inside the lumen of the hollow membrane. Parameters affecting the extraction efficiency were investigated in detail. Under the optimized conditions, enrichment factors in the range of 97-103-fold were obtained from 3mL of sample solution with a 10min extraction time and an applied voltage of 300V across the HPIM. The detection limits of the method for the three drugs were in the range of 1.0-2.5ng/mL (at a signal/noise ratio of three), with relative standard deviations of between 6.4% and 7.9%. When the method was applied to spiked plasma samples, the relative recoveries ranged from 99.2% to 100.8%. Enrichment factors of 103, 99 and 97 were obtained for amphetamine, methamphetamine, and MDMA, respectively. A comparison was also made between the newly developed approach and EME using supported liquid membranes (SLM) as well as standard sample preparation methods (liquid-liquid extraction) used by the Toxicology Unit, Department of Chemistry, Malaysia.
    Matched MeSH terms: Polymers/chemistry
  7. Ang QY, Low SC
    Anal Bioanal Chem, 2015 Sep;407(22):6747-58.
    PMID: 26163132 DOI: 10.1007/s00216-015-8841-9
    Molecular imprinting is an emerging technique to create imprinted polymers that can be applied in affinity-based separation, in particular, biomimetic sensors. In this study, the matrix of siloxane bonds prepared from the polycondensation of hydrolyzed tetraethoxysilane (TEOS) was employed as the inorganic monomer for the formation of a creatinine (Cre)-based molecularly imprinted polymer (MIP). Doped aluminium ion (Al(3+)) was used as the functional cross-linker that generated Lewis acid sites in the confined silica matrix to interact with Cre via sharing of lone pair electrons. Surface morphologies and pore characteristics of the synthesized MIP were determined by field emission scanning electron microscopy (FESEM) and Brunauer-Emmet-Teller (BET) analyses, respectively. The imprinting efficiency of MIPs was then evaluated through the adsorption of Cre with regard to molar ratios of Al(3+). A Cre adsorption capacity of up to 17.40 mg Cre g(-1) MIP was obtained and adsorption selectivity of Cre to its analogues creatine (Cr) and N-hydroxysuccinimide (N-hyd) were found to be 3.90 ± 0.61 and 4.17 ± 3.09, respectively. Of all the studied MIP systems, chemisorption was predicted as the rate-limiting step in the binding of Cre. The pseudo-second-order chemical reaction kinetic provides the best correlation of the experimental data. Furthermore, the equilibrium adsorption capacity of MIP fit well with a Freundlich isotherm (R (2) = 0.98) in which the heterogeneous surface was defined.
    Matched MeSH terms: Polymers/chemistry*
  8. Mohamed A, Anas AK, Bakar SA, Ardyani T, Zin WM, Ibrahim S, et al.
    J Colloid Interface Sci, 2015 Oct 1;455:179-87.
    PMID: 26070188 DOI: 10.1016/j.jcis.2015.05.054
    Here is presented a systematic study of the dispersibility of multiwall carbon nanotubes (MWCNTs) in natural rubber latex (NR-latex) assisted by a series of single-, double-, and triple-sulfosuccinate anionic surfactants containing phenyl ring moieties. Optical polarising microscopy, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and Raman spectroscopy have been performed to obtain the dispersion-level profiles of the MWCNTs in the nanocomposites. Interestingly, a triple-chain, phenyl-containing surfactant, namely sodium 1,5-dioxo-1,5-bis(3-phenylpropoxy)-3-((3-phenylpropoxy)carbonyl) pentane-2-sulfonate (TCPh), has a greater capacity the stabilisation of MWCNTs than a commercially available single-chain sodium dodecylbenzenesulfonate (SDBS) surfactant. TCPh provides significant enhancements in the electrical conductivity of nanocomposites, up to ∼10(-2) S cm(-1), as measured by a four-point probe instrument. These results have allowed compilation of a road map for the design of surfactant architectures capable of providing the homogeneous dispersion of MWCNTs required for the next generation of polymer-carbon-nanotube materials, specifically those used in aerospace technology.
    Matched MeSH terms: Polymers/chemistry
  9. Irfan M, Idris A
    Mater Sci Eng C Mater Biol Appl, 2015 Nov 1;56:574-92.
    PMID: 26249629 DOI: 10.1016/j.msec.2015.06.035
    Polyethersulfone (PES) based membranes are used for dialysis, but exposure to blood can result in numerous interactions between the blood elements and the membrane. Adsorption and transformation of plasma proteins, activation of blood cells, adherence of platelets and thrombosis reactions against PES membrane can invoke severe blood reactions causing the increase rate of mortality and morbidity of hemodialysis (HD) patients. In order to minimize blood immune response, different biomimetic, zwitterionic, non-ionic, anticoagulant molecules and hydrophilic brushes were immobilized or blended with PES polymers. These additives modified the nature of the membrane, enhanced their biocompatibility and also increased the uremic waste dialysis properties. In this review, current perspectives of the different additives which are used with PES are highlighted in relation with PES membrane-associated blood reactions. The additive's purpose, compatibility, preparation techniques, methods of addition to polymer and influence on the chemistry and performance of hemodialysis membranes are described.
    Matched MeSH terms: Polymers/chemistry*
  10. Arjmandi R, Hassan A, Mohamad Haafiz MK, Zakaria Z
    Int J Biol Macromol, 2015 Nov;81:91-9.
    PMID: 26234577 DOI: 10.1016/j.ijbiomac.2015.07.062
    In this study, hybrid montmorillonite/cellulose nanowhiskers (MMT/CNW) reinforced polylactic acid (PLA) nanocomposites were produced through solution casting. The CNW filler was first isolated from microcrystalline cellulose by chemical swelling technique. The partial replacement of MMT with CNW in order to produce PLA/MMT/CNW hybrid nanocomposites was performed at 5 parts per hundred parts of polymer (phr) fillers content, based on highest tensile strength values as reported in our previous study. MMT were partially replaced with various amounts of CNW (1, 2, 3, 4 and 5phr). The tensile, thermal, morphological and biodegradability properties of PLA hybrid nanocomposites were investigated. The highest tensile strength of hybrid nanocomposites was obtained with the combination of 4phr MMT and 1phr CNW. Interestingly, the ductility of hybrid nanocomposites increased significantly by 79% at this formulation. The Young's modulus increased linearly with increasing CNW content. Thermogravimetric analysis illustrated that the partial replacement of MMT with CNW filler enhanced the thermal stability of the PLA. This is due to the relatively good dispersion of fillers in the hybrid nanocomposites samples as revealed by transmission electron microscopy. Interestingly, partial replacements of MMT with CNW improved the biodegradability of hybrid nanocomposites compared to PLA/MMT and neat PLA.
    Matched MeSH terms: Polymers/chemistry*
  11. Sumisha A, Arthanareeswaran G, Lukka Thuyavan Y, Ismail AF, Chakraborty S
    Ecotoxicol Environ Saf, 2015 Nov;121:174-9.
    PMID: 25890841 DOI: 10.1016/j.ecoenv.2015.04.004
    In this study, laundry wastewater filtration was studied using hydrophilic polyvinylpyrollidone (PVP) modified polyethersulfone (PES) ultrafiltration membranes. The performances of PES/PVP membranes were assessed using commercial PES membrane with 10kDa in ultrafiltration. Operating parameters The influence of transmembrane pressure (TMP) and stirring speed on laundry wastewater flux was investigated. A higher permeate flux of 55.2L/m(2)h was obtained for modified PES membrane with high concentration of PVP at TMP of 500kPa and 750rpm of stirring speed. The separation efficiencies of membranes were also studied with respect to chemical oxygen demand (COD), total dissolved solids (TDS), turbidity and conductivity. Results showed that PES membrane with 10% of PVP had higher permeate flux, flux recovery and less fouling when compared with other membranes. Higher COD and TDS rejection of 88% and 82% were also observed for modified membranes due to the improved surface property of membranes. This indicated that modified PES membranes are suitable for the treatment of surfactant, detergent and oil from laundry wastewater.
    Matched MeSH terms: Polymers/chemistry*
  12. Kiran SA, Arthanareeswaran G, Thuyavan YL, Ismail AF
    Ecotoxicol Environ Saf, 2015 Nov;121:186-92.
    PMID: 25869419 DOI: 10.1016/j.ecoenv.2015.04.001
    In this study, modified polyethersulfone (PES) and cellulose acetate (CA) membranes were used in the treatment of car wash effluent using ultrafiltration. Hydrophilic sulfonated poly ether ether ketone (SPEEK) and bentonite as nanoclay were used as additives for the PES and CA membrane modification. Performances of modified membranes were compared with commercial PES membrane with 10kDa molecular weight cut off (MWCO). The influencing parameters like stirrer speed (250-750rpm) and transmembrane pressure (100-600kPa) (TMP) were varied and their effects were studied as a function of flux. In the treatment of car wash effluent, a higher permeate flux of 52.3L/m(2)h was obtained for modified CA membrane at TMP of 400kPa and stirrer speed of 750rpm. In comparison with modified PES membrane and commercial PES membrane, modified CA membranes showed better performance in terms of flux and flux recovery ratio. The highest COD removal (60%) was obtained for modified CA membrane and a lowest COD removal (47%) was observed for commercial PES membrane. The modified membranes were better at removing COD, turbidity and maintained more stable flux than commercial PES membrane, suggesting they will provide better economic performance in car wash effluent reclamation.
    Matched MeSH terms: Polymers/chemistry*
  13. Deng E, Nguyen NT, Hild F, Hamilton IE, Dimitrakis G, Kingman SW, et al.
    Molecules, 2015 Nov 09;20(11):20131-45.
    PMID: 26569198 DOI: 10.3390/molecules201119681
    Macromolecules that possess three-dimensional, branched molecular structures are of great interest because they exhibit significantly differentiated application performance compared to conventional linear (straight chain) polymers. This paper reports the synthesis of 3- and 4-arm star branched polymers via ring opening polymerisation (ROP) utilising multi-functional hydroxyl initiators and Sn(Oct)2 as precatalyst. The structures produced include mono-functional hydrophobic and multi-functional amphiphilic core corona stars. The characteristics of the synthetic process were shown to be principally dependent upon the physical/dielectric properties of the initiators used. ROP's using initiators that were more available to become directly involved with the Sn(Oct)₂ in the "in-situ" formation of the true catalytic species were observed to require shorter reaction times. Use of microwave heating (MWH) in homopolymer star synthesis reduced reaction times compared to conventional heating (CH) equivalents, this was attributed to an increased rate of "in-situ" catalyst formation. However, in amphiphilic core corona star formation, the MWH polymerisations exhibited slower propagation rates than CH equivalents. This was attributed to macro-structuring within the reaction medium, which reduced the potential for reaction. It was concluded that CH experiments were less affected by this macro-structuring because it was disrupted by the thermal currents/gradients caused by the conductive/convective heating mechanisms. These gradients are much reduced/absent with MWH because it selectively heats specific species simultaneously throughout the entire volume of the reaction medium. These partitioning problems were overcome by introducing additional quantities of the species that had been determined to selectively heat.
    Matched MeSH terms: Polymers/chemistry*
  14. Pathak M, Coombes AGA, Turner MS, Palmer C, Wang D, Steadman KJ
    J Pharm Sci, 2015 Dec;104(12):4217-4222.
    PMID: 26398713 DOI: 10.1002/jps.24652
    Polycaprolactone (PCL) matrices loaded with doxycycline were produced by rapidly cooling suspensions of the drug powder in PCL solution in acetone. Drug loadings of 5%, 10%, and 15% (w/w) of the PCL content were achieved. Exposure of doxycycline powder to matrix processing conditions in the absence of PCL revealed an endothermic peak at 65°C with the main peak at 167°C, suggesting solvatomorph formation. Rapid "burst release" of 24%-32% was measured within 24 h when matrices were immersed in simulated vaginal fluid (SVF) at 37°C, because of the presence of drug at or close to the matrix surface, which is further confirmed by scanning electron microscopy. Gradual release of 66%-76% of the drug content occurred over the following 14 days. SVF containing doxycycline released from drug-loaded PCL matrices retained 81%-90% antimicrobial activity compared with the nonformulated drug. The concentrations of doxycycline predicted to be released into vaginal fluid from a PCL matrix in the form of an intravaginal ring would be sufficient to kill Neisseria gonorrhoea and many other pathogens. These results indicate that PCL may be a suitable polymer for controlled intravaginal delivery of doxycycline for the treatment of sexually transmitted infections.
    Matched MeSH terms: Polymers/chemistry
  15. Tekade RK, Maheshwari RG, Sharma PA, Tekade M, Chauhan AS
    Curr Pharm Des, 2015;21(31):4614-36.
    PMID: 26486147
    siRNA technology presents a helpful means of gene silencing in mammalian cells. Advancement in the field includes enhanced attentiveness in the characterization of target and off-target effects employing suitable controls and gene expression microarrays. These will permit expansion in the measurement of single and multiple target combinations and also permit comprehensive efforts to understand mammalian cell processes. Another fact is that the delivery of siRNA requires the creation of a nanoparticulate vector with controlled structural geometry and surface modalities inside the targeted cells. On the other hand, dendrimers represent the class of carrier system where massive control over size, shape and physicochemical properties makes this delivery vector exceptional and favorable in genetic transfection applications. The siRNA therapeutics may be incorporated inside the geometry of the density controlled dendrimers with the option of engineering the structure to the specific needs of the genetic material and its indication. The existing reports on the siRNA carrying and deliverance potential of dendrimers clearly suggest the significance of this novel class of polymeric architecture and certainly elevate the futuristic use of this highly branched vector as genetic material delivery system.
    Matched MeSH terms: Polymers/chemistry
  16. Esmaeili C, Abdi MM, Mathew AP, Jonoobi M, Oksman K, Rezayi M
    Sensors (Basel), 2015;15(10):24681-97.
    PMID: 26404269 DOI: 10.3390/s151024681
    Integrating polypyrrole-cellulose nanocrystal-based composites with glucose oxidase (GOx) as a new sensing regime was investigated. Polypyrrole-cellulose nanocrystal (PPy-CNC)-based composite as a novel immobilization membrane with unique physicochemical properties was found to enhance biosensor performance. Field emission scanning electron microscopy (FESEM) images showed that fibers were nanosized and porous, which is appropriate for accommodating enzymes and increasing electron transfer kinetics. The voltammetric results showed that the native structure and biocatalytic activity of GOx immobilized on the PPy-CNC nanocomposite remained and exhibited a high sensitivity (ca. 0.73 μA·mM(-1)), with a high dynamic response ranging from 1.0 to 20 mM glucose. The modified glucose biosensor exhibits a limit of detection (LOD) of (50 ± 10) µM and also excludes interfering species, such as ascorbic acid, uric acid, and cholesterol, which makes this sensor suitable for glucose determination in real samples. This sensor displays an acceptable reproducibility and stability over time. The current response was maintained over 95% of the initial value after 17 days, and the current difference measurement obtained using different electrodes provided a relative standard deviation (RSD) of 4.47%.
    Matched MeSH terms: Polymers/chemistry
  17. Penjumras P, Rahman RA, Talib RA, Abdan K
    ScientificWorldJournal, 2015;2015:293609.
    PMID: 26167523 DOI: 10.1155/2015/293609
    Response surface methodology was used to optimize preparation of biocomposites based on poly(lactic acid) and durian peel cellulose. The effects of cellulose loading, mixing temperature, and mixing time on tensile strength and impact strength were investigated. A central composite design was employed to determine the optimum preparation condition of the biocomposites to obtain the highest tensile strength and impact strength. A second-order polynomial model was developed for predicting the tensile strength and impact strength based on the composite design. It was found that composites were best fit by a quadratic regression model with high coefficient of determination (R (2)) value. The selected optimum condition was 35 wt.% cellulose loading at 165°C and 15 min of mixing, leading to a desirability of 94.6%. Under the optimum condition, the tensile strength and impact strength of the biocomposites were 46.207 MPa and 2.931 kJ/m(2), respectively.
    Matched MeSH terms: Polymers/chemistry*
  18. Razak RA, Abdullah MM, Hussin K, Ismail KN, Hardjito D, Yahya Z
    Int J Mol Sci, 2015;16(5):11629-47.
    PMID: 26006238 DOI: 10.3390/ijms160511629
    This paper presents the mechanical function and characterization of an artificial lightweight geopolymer aggregate (ALGA) using LUSI (Sidoarjo mud) and alkaline activator as source materials. LUSI stands for LU-Lumpur and SI-Sidoarjo, meaning mud from Sidoarjo which erupted near the Banjarpanji-1 exploration well in Sidoarjo, East Java, Indonesia on 27 May 2006. The effect of NaOH molarity, LUSI mud/Alkaline activator (LM/AA) ratio, and Na2SiO3/NaOH ratio to the ALGA are investigated at a sintering temperature of 950 °C. The results show that the optimum NaOH molarity found in this study is 12 M due to the highest strength (lowest AIV value) of 15.79% with lower water absorption and specific gravity. The optimum LUSI mud/Alkaline activator (LM/AA) ratio of 1.7 and the Na2SiO3/NaOH ratio of 0.4 gives the highest strength with AIV value of 15.42% with specific gravity of 1.10 g/cm3 and water absorption of 4.7%. The major synthesized crystalline phases were identified as sodalite, quartz and albite. Scanning Electron Microscope (SEM) image showed more complete geopolymer matrix which contributes to highest strength of ALGA produced.
    Matched MeSH terms: Polymers/chemistry*
  19. Khairi NA, Yusof NA, Abdullah AH, Mohammad F
    Int J Mol Sci, 2015;16(5):10562-77.
    PMID: 26006226 DOI: 10.3390/ijms160510562
    In recent years, molecularly-imprinted polymers (MIPs) have attracted the attention of several researchers due to their capability for molecular recognition, easiness of preparation, stability and cost-effective production. By taking advantage of these facts, Hg(II) imprinted and non-imprinted copolymers were prepared by polymerizing mercury nitrate stock solution (or without it) with methacrylic acid (MAA), 2-hydroxyl ethyl methacrylate (HEMA), methanol and ethylene glycol dimethacrylate (EGDMA) as the monomer, co-monomer solvent (porogen) and cross-linker, respectively. Thus, the formed Hg(II) imprinted polymer was characterized by using Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), Brunauer, Emmett and Teller (BET) and thermal gravimetric analysis (TGA). The separation and preconcentration characteristics of Hg(II) imprinted polymer were investigated by solid phase extraction (SPE) procedures, and an optimal pH of 7 was investigated as ideal. The specific surface area of the Hg(II) imprinted polymer was found to be 19.45 m2/g with a size range from 100 to 140 µm in diameter. The maximum adsorption capacity was observed to be 1.11 mg/g of Hg(II) imprinted beads with 87.54% removal of Hg(II) ions within the first 5 min. The results of the study therefore confirm that the Hg(II) imprinted polymer can be used multiple times without significantly losing its adsorption capacity.
    Matched MeSH terms: Polymers/chemistry*
  20. Razavi M, Karimian H, Yeong CH, Chung LY, Nyamathulla S, Noordin MI
    Drug Des Devel Ther, 2015;9:4373-86.
    PMID: 26273196 DOI: 10.2147/DDDT.S86263
    The present research was aimed at formulating a metformin HCl sustained-release formulation from a combination of polymers, using the wet granulation technique. A total of 16 formulations (F1-F16) were produced using different combinations of the gel-forming polymers: tamarind kernel powder, salep (palmate tubers of Orchis morio), and xanthan. Post-compression studies showed that there were no interactions between the active drug and the polymers. Results of in vitro drug-release studies indicated that the F10 formulation which contained 5 mg of tamarind kernel powder, 33.33 mg of xanthan, and 61.67 mg of salep could sustain a 95% release in 12 hours. The results also showed that F2 had a 55% similarity factor with the commercial formulation (C-ER), and the release kinetics were explained with zero order and Higuchi models. The in vivo study was performed in New Zealand White rabbits by gamma scintigraphy; the F10 formulation was radiolabeled using samarium (III) oxide ((153)Sm2O3) to trace transit of the tablets in the gastrointestinal tract. The in vivo data supported the retention of F10 formulation in the gastric region for 12 hours. In conclusion, the use of a combination of polymers in this study helped to develop an optimal gastroretentive drug-delivery system with improved bioavailability, swelling, and floating characteristics.
    Matched MeSH terms: Polymers/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links