Displaying publications 121 - 140 of 415 in total

Abstract:
Sort:
  1. Jing H, Liu Z, Kuan SH, Chieng S, Ho CL
    Molecules, 2021 May 21;26(11).
    PMID: 34064160 DOI: 10.3390/molecules26113084
    Recently, microbial-based iron reduction has been considered as a viable alternative to typical chemical-based treatments. The iron reduction is an important process in kaolin refining, where iron-bearing impurities in kaolin clay affects the whiteness, refractory properties, and its commercial value. In recent years, Gram-negative bacteria has been in the center stage of iron reduction research, whereas little is known about the potential use of Gram-positive bacteria to refine kaolin clay. In this study, we investigated the ferric reducing capabilities of five microbes by manipulating the microbial growth conditions. Out of the five, we discovered that Bacillus cereus and Staphylococcus aureus outperformed the other microbes under nitrogen-rich media. Through the biochemical changes and the microbial behavior, we mapped the hypothetical pathway leading to the iron reduction cellular properties, and found that the iron reduction properties of these Gram-positive bacteria rely heavily on the media composition. The media composition results in increased basification of the media that is a prerequisite for the cellular reduction of ferric ions. Further, these changes impact the formation of biofilm, suggesting that the cellular interaction for the iron(III)oxide reduction is not solely reliant on the formation of biofilms. This article reveals the potential development of Gram-positive microbes in facilitating the microbial-based removal of metal contaminants from clays or ores. Further studies to elucidate the corresponding pathways would be crucial for the further development of the field.
    Matched MeSH terms: Iron/metabolism*
  2. Arumugam K
    Hum Reprod, 1994 Jun;9(6):1153-7.
    PMID: 7962392
    Endometriosis and infertility are commonly associated. This study investigated the role of accelerated lipid peroxidation of spermatozoa by the peritoneal fluid of patients with endometriosis as a cause for this association. It proposes that the increased iron concentration present in the fluid of these patients acts as a catalyst for the process. Peritoneal fluid from 25 patients with endometriosis and 25 matched controls was obtained at laparoscopy. Spermatozoa were incubated in the fluid from both groups and the subsequent acrosome reaction rates analysed. The relationship between these results and iron concentration in the fluid was examined. A significant decrease in the acrosome reaction rate was seen in the endometriotic group (P = 0.034). Overall, a decrease in the acrosome reaction rate was associated with an increased iron concentration in the fluid (18 of the 25 pairs). In mild disease, (six of 11 pairs), the relationship was not as marked as that in severe disease (12 of 14 pairs). These results suggest that the peritoneal fluid in patients with endometriosis has a detrimental action on the acrosome reaction of spermatozoa in vitro.
    Matched MeSH terms: Iron/metabolism*
  3. Ahmad P, Khandaker MU, Khan A, Rehman F, Din SU, Ali H, et al.
    Biomed Res Int, 2022;2022:3605054.
    PMID: 36420094 DOI: 10.1155/2022/3605054
    A simple process based on the dual roles of both magnesium oxide (MgO) and iron oxide (FeO) with boron (B) as precursors and catalysts has been developed for the synthesis of borate composites of magnesium and iron (Mg2B2O5-Fe3BO6) at 1200°C. The as-synthesized composites can be a single material with the improved and collective properties of both iron borates (Fe3BO6) and magnesium borates (Mg2B2O5). At higher temperatures, the synthesized Mg2B2O5-Fe3BO6 composite is found thermally more stable than the single borates of both magnesium and iron. Similarly, the synthesized composites are found to prevent the growth of both gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) pathogenic bacteria on all the tested concentrations. Moreover, the inhibitory effect of the synthesized composite increases with an increase in concentration and is more pronounced against S. aureus as compared to E. coli.
    Matched MeSH terms: Iron*
  4. Ahmad M, Asghar A, Abdul Raman AA, Wan Daud WM
    PLoS One, 2015;10(10):e0141348.
    PMID: 26517827 DOI: 10.1371/journal.pone.0141348
    Fenton oxidation, an advanced oxidation process, is an efficient method for the treatment of recalcitrant wastewaters. Unfortunately, it utilizes H2O2 and iron-based homogeneous catalysts, which lead to the formation of high volumes of sludge and secondary pollutants. To overcome these problems, an alternate option is the usage of heterogeneous catalyst. In this study, a heterogeneous catalyst was developed to provide an alternative solution for homogeneous Fenton oxidation. Iron Zeolite Socony Mobile-5 (Fe-ZSM-5) was synthesized using a new two-step process. Next, the catalyst was characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, fourier transform infrared spectroscopy, and Brunauer-Emmett-Teller analysis and tested against a model wastewater containing the azo dye Acid Blue 113. Results showed that the loading of iron particles reduced the surface area of the catalyst from 293.59 to 243.93 m2/g; meanwhile, the average particle size of the loaded material was 12.29 nm. Furthermore, efficiency of the developed catalyst was evaluated by performing heterogeneous Fenton oxidation. Taguchi method was coupled with principal component analysis in order to assess and optimize mineralization efficiency. Experimental results showed that under optimized conditions, over 99.7% degradation and 77% mineralization was obtained, with a 90% reduction in the consumption of the developed catalyst. Furthermore, the developed catalyst was stable and reusable, with less than 2% leaching observed under optimized conditions. Thus, the present study proved that newly developed catalyst has enhanced the oxidation process and reduced the chemicals consumption.
    Matched MeSH terms: Iron/chemistry*
  5. Heng GC, Isa MH, Lim JW, Ho YC, Zinatizadeh AAL
    Environ Sci Pollut Res Int, 2017 Dec;24(35):27113-27124.
    PMID: 28963706 DOI: 10.1007/s11356-017-0287-5
    Biological treatments, such as activated sludge process, are common methods to treat municipal and industrial wastewaters. However, they produce huge amounts of waste activated sludge (WAS). The excess sludge treatment and disposal are a challenge for wastewater treatment plants due to economic, environmental, and regulatory factors. In this study, photo-Fenton pretreatment (oxidation using hydrogen peroxide and iron catalyst aided with UV light) was optimized using response surface methodology (RSM) and central composite design (CCD) to determine the effects of three operating parameters (H2O2 dosage, H2O2/Fe2+ molar ratio, and irradiation time) on disintegration and dewaterability of WAS. MLVSS removal, capillary suction time (CST) reduction, sCOD, and EPS were obtained as 70%, 25%, 12,000 mg/L, and 500 mg/L, respectively, at the optimal conditions, i.e., 725 g H2O2/kg TS, H2O2/Fe2+ molar ratio 80, and irradiation time 40 min. Two batch-fed completely mixed mesophilic anaerobic digesters were then operated at 15-day solid retention time (SRT) and 37 ± 0.5 °C to compare the digestibility of untreated and photo-Fenton pretreated sludge in terms of volatile solids (VS) reduction, COD removal, and biogas production at steady-state operations. Photo-Fenton pretreatment followed by anaerobic digestion of WAS was very effective and yielded 75.7% total VS reduction, 81.5% COD removal, and 0.29-0.31 m3/kg VSfed·d biogas production rate, compared to 40.7% total VS solid reduction, 54.7% COD removal, and 0.12-0.17 m3/kg VSfed·d biogas production rate for control. Thus, photo-Fenton can be a useful pretreatment step in sludge management.
    Matched MeSH terms: Iron/chemistry*
  6. Loo WW, Pang YL, Lim S, Wong KH, Lai CW, Abdullah AZ
    Chemosphere, 2021 Jun;272:129588.
    PMID: 33482519 DOI: 10.1016/j.chemosphere.2021.129588
    Iron-doped titanium dioxide loaded on activated carbon (Fe-TiO2/AC) was successfully synthesized from oil palm empty fruit bunch (OPEFB) using sol-gel method. The properties of the synthesized pure TiO2, Fe-doped TiO2, AC, TiO2/AC and Fe-TiO2/AC were examined by various techniques such as field emission scanning electron microscopy (FE-SEM), Fourier-transform infrared spectroscopy (FT-IR), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS) and nitrogen adsorption-desorption analyses at 77 K. FE-SEM revealed that Fe-doped TiO2 particles were dispersed homogeneously on the AC surface. FT-IR demonstrated high surface hydroxylation after Fe doping on TiO2 and UV-Vis DRS showed that Fe-TiO2/AC had the lowest band gap energy. Catalytic performance results proved that Fe dopants could restrict the recombination rate of hole and electron pairs, whereas AC support improved the Malachite Green (MG) adsorption sites and active sites of the hybrid catalyst. Photocatalytic degradation of 100 mg/L MG in the presence of 1.0 g/L 15 wt% Fe-TiO2 incorporated with 25 wt% AC, initial solution pH of 4 and 3 mM H2O2 could achieve the highest removal efficiency of 97% after 45 min light irradiation. This work demonstrates a promising approach to synthesis an inexpensive and efficient Fe-TiO2/AC for the photocatalytic degradation of organic dye.
    Matched MeSH terms: Iron*
  7. Teng, Iyu Lin, Ismail Bahari, Muhamad Samudi Yasir
    MyJurnal
    In Malaysia, mineral processing plant is one of the Naturally Occurring Radioactive Material (NORM) processing industries controlled by the Atomic Energy Licensing Board (AELB) through the enforcement of Atomic Energy Licensing Act 1984 (Act 304). The activities generated waste which is called as TENORM wastes. TENORM wastes are mainly found in thorium hydroxide from the processing of xenotime and monazite, and iron oxide and red gypsum from the processing of ilmenite. Other TENORM wastes are scales and sludge from the oil and gas industries, tin slag produced from the smelting of tin, and ilmenite, zircon,
    and monazite produced from the processing of tin tailing (amang). The environmental and radiological monitoring program is needed to ensure that the TENORM wastes did not caused any contamination to the environment. The wastes vary in the types of samples, parameters of analysis as well as the frequency of monitoring based on license’s conditions issued by the AELB. The main objective of this study is to assess the suitability of license’s condition and the monitoring program required in oil and gas, and mineral processing
    industries. Study was done by assessing the data submitted to the AELB in order to comply with the licensing requirement. This study had found out that there are a few of license’s conditions that need to be reviewed accordingly based on the processing activity.
    Matched MeSH terms: Iron
  8. Zhang ZW, Shimbo S, Miyake K, Watanabe T, Nakatsuka H, Matsuda-Inoguchi N, et al.
    Eur J Clin Nutr, 1999 Mar;53(3):226-32.
    PMID: 10201805
    To examine the accuracy of food composition table (FCT)-based estimation of dietary nutrient element intake in reference to the instrumental measurement by inductively-coupled plasma mass spectrometry (ICP-MS).
    Matched MeSH terms: Iron, Dietary/administration & dosage*
  9. Mohd NI, Gopal K, Raoov M, Mohamad S, Yahaya N, Lim V, et al.
    Talanta, 2019 May 01;196:217-225.
    PMID: 30683354 DOI: 10.1016/j.talanta.2018.12.043
    The non-ionic silicone surfactant (OFX 0309) has been applied in cloud point extraction for the extraction of triazine herbicides in food samples. Evidence has shown that the non-ionic silicone surfactant demonstrated a good performance as an extractor toward triazine herbicides. In this present study, OFX 0309 surfactant was combined with activated charcoal (AC) due to their valuable properties. Activated charcoal modified with non-ionic silicone surfactant coated with magnetic nanoparticles (AC-OFX MNPs) was synthesized and characterized by FT-IR, VSM, SEM, TEM and BET. This novel material was applied as a magnetic adsorbent for the pre-concentration and separation of triazine herbicides due to hydrophobic interaction between polysiloxane polyether of OFX 0309 surfactant and triazine herbicides. Under optimal conditions, the proposed magnetic solid phase extraction method using AC-OFX MNPs adsorbent was applied to extract triazine herbicides from selected milk and rice samples using high performance liquid chromatography coupled with diode array detector. The validation method revealed a good linearity (1 - 500 μg L-1) with the coefficient of determination (R2) in the range of 0.992-0.998 for the samples. The limits of detection (LOD) of the developed method were 0.04 - 0.05 µg L-1 (milk sample) and 0.02 - 0.05 µg L-1 (rice sample). The limits of quantification (LOQ) were 0.134 - 0.176 µg L-1 (milk sample) and 0.075 - 0.159 µg L-1 (rice sample). The recoveries of the triazine compounds ranged from 81% to 109% in spiked milk samples and from 81% to 111% in spiked rice samples, with relative standard deviations (RSD) values lower than 13.5% and 12.1% for milk and rice samples, respectively. To the best of our knowledge, this is the first study that have investigated the use of magnetic nanoparticles coated activated charcoal modified with OFX 0309 surfactant for pretreatment of triazine herbicides in food samples analysis for simultaneous separation of organic pollutants.
    Matched MeSH terms: Iron/chemistry
  10. Low, K.H., Zain, S.M., Abas, M.R., Ali Mohd, M.
    ASM Science Journal, 2009;3(1):71-76.
    MyJurnal
    Fractional factorial design was utilized to evaluate the effect of combinations of nitric acid, hydrogen peroxide, hydrochloric acid and water for microwave digestion of fish muscle. Upon digestion, copper, iron and zinc were determined by flame atomic absorption spectroscopy. H2O2 and HCl volumes were found to be the most significant parameters which resulted in good metal recoveries. This is especially so for the effect of HCl on Fe recovery. The results indicated that the combination of 4 mL 65% HNO3, 2 mL 30% H2O2 and 2 mL 30% HCl gave the most satisfactory percentage recovery. There was good agreement between measured and certified values for all metals with respect to the DORM-3 fish protein.
    Matched MeSH terms: Iron
  11. Venny, Gan S, Ng HK
    Environ Sci Pollut Res Int, 2014 Feb;21(4):2888-97.
    PMID: 24151025 DOI: 10.1007/s11356-013-2207-7
    Extensive contamination of soils by highly recalcitrant contaminants such as polycyclic aromatic hydrocarbons (PAHs) is an environmental problem arising from rapid industrialisation. This work focusses on the remediation of soil contaminated with 3- and 4-aromatic ring PAHs (phenanthrene (PHE) and fluoranthene (FLUT)) through catalysed hydrogen peroxide propagation (CHP). In the present work, the operating parameters of the CHP treatment in packed soil column was optimised with central composite design (H2O2/soil 0.081, Fe(3+)/soil 0.024, sodium pyrophosphate (SP)/soil 0.024, pH of SP solution 7.73). The effect of contaminant aging on PAH removals was also investigated. Remarkable oxidative PAH removals were observed for the short aging and extended aging period (up to 86.73 and 70.61 % for PHE and FLUT, respectively). The impacts of CHP on soil biological, chemical and physical properties were studied for both spiked and aged soils. Overall, the soil functionality analyses after the proposed operating condition demonstrated that the values for soil respiration, electrical conductivity, pH and iron precipitation fell within acceptable limits, indicating the compatibility of the CHP process with land restoration.
    Matched MeSH terms: Biodegradation, Environmental; Iron/chemistry
  12. Md Yusop AH, Wan Ali WFF, Jamaludin FH, Szali Januddi F, Sarian MN, Saad N, et al.
    Biotechnol J, 2024 Mar;19(3):e2300464.
    PMID: 38509814 DOI: 10.1002/biot.202300464
    The present study evaluates the corrosion behavior of poly[xylitol-(1,12-dodecanedioate)](PXDD)-HA coated porous iron (PXDD140/HA-Fe) and its cell-material interaction aimed for temporary bone scaffold applications. The physicochemical analyses show that the addition of 20 wt.% HA into the PXDD polymers leads to a higher crystallinity and lower surface roughness. The corrosion assessments of the PXDD140/HA-Fe evaluated by electrochemical methods and surface chemistry analysis indicate that HA decelerates Fe corrosion due to a lower hydrolysis rate following lower PXDD content and being more crystalline. The cell viability and cell death mode evaluations of the PXDD140/HA-Fe exhibit favorable biocompatibility as compared to bare Fe and PXDD-Fe scaffolds owing to HA's bioactive properties. Thus, the PXDD140/HA-Fe scaffolds possess the potential to be used as a biodegradable bone implant.
    Matched MeSH terms: Iron
  13. Azlan A, Khoo HE, Idris MA, Ismail A, Razman MR
    ScientificWorldJournal, 2012;2012:403574.
    PMID: 22649292 DOI: 10.1100/2012/403574
    The drinking and mineral water samples obtained from different geographical locations had concentrations of the selected minerals lower than the standard limits, except for manganese, arsenic, and fluoride. The concentrations of manganese and arsenic in two mineral water samples were slightly higher than the standard international recommended limits. One mineral water sample had a fluoride concentration higher than the standard limits, whereas manganese was not detected in nine drinking and mineral water samples. Most of the selected minerals found in the tap water samples were below the international standard limits, except for iron and manganese. The concentrations of iron and manganese in the tap water samples were higher than the standard limits, which were obtained from one and three of the studied locations, respectively. The potable water obtained from various manufacturers and locations in Peninsular Malaysia is safe for consumption, as the minerals concentrations were below the standard limits prescribed by the Malaysian Food Regulations of 1985. The data obtained may also provide important information related to daily intake of these minerals from drinking water.
    Matched MeSH terms: Iron/analysis
  14. Karim N, Leong SW
    Asia Pac J Clin Nutr, 2000 Jun;9(2):82-6.
    PMID: 24394392
    A nutritional status study was carried out among a group of young Chinese adults, aged between 19 and 25, in Kuala Lumpur, Malaysia. Subjects comprised 108 young adults (55 women, 53 men) who were students at two institutes of higher learning. Physical characteristics were evaluated by anthropometric measurements while food intake was determined with a 3-day food record. Blood cholesterol and triglyceride were assessed using the Reflotron analyser. Birthweight was obtained from birth certificates or by proxy. The results showed that the mean body mass index (BMI) for men and women was 21.4 ± 3.3 and 20.0 ± 2.0, respectively, indicating normal weight. Further analysis of BMI classification demonstrated that 28% of men and 39% of women were underweight, 11% of men and 2% of women were overweight while 2% of men were obese. Mean waist-to-hip ratio showed that the subjects had a low risk of developing cardiovascular disease (0.72 ± 0.03 women; 0.81 ± 0.05 men). Mean energy intake was 8841 ± 1756 kJ per day for men and 6426 ± 1567 kJ per day for women. Closer analysis of energy intake of the subjects showed that 86% of men and 91% of women were consuming below the Malaysian recommendation for energy. Nutrients found to be deficient in at least one third of women were calcium, vitamin A, niacin and iron. Mean cholesterol intake in the diet was 278.7 ± 108.7 mg in men and 207.0 ± 82.5 mg in women and there was a significant difference between genders. Blood cholesterol and triglyceride levels were 3.88 ± 0.76 mmol/L and 1.08 ± 0.33 mmol/L, respectively in men, while these levels were lower in women, 3.87 ± 0.80 mmol/L for cholesterol and 0.99 ± 0.29 mmol/L for triglyceride. A general trend of higher mean blood cholesterol and triglyceride levels was shown in adults who were born with lower birthweights.
    Matched MeSH terms: Iron
  15. Riahi S, Mei IL, Idris FB, George E, Noor SM
    PMID: 26863862
    Pre-donation screening declarations and hemoglobin (Hb) testing are measures used to determine the quality of donated blood. The copper sulphate (CuSo4) method used to screen for blood abnormalities can give inaccurate results if strict quality control is not applied. Blood donors who are carriers of thalassemia and those with mild iron deficiency anemia (IDA) are usually asymptomatic and frequently missed at blood donation. The aim of this study was to evaluate the red blood cell (RBC) indices related disorders among blood donors who were deemed qualified to donate blood after screening with CuSo4 method. One hundred fifty-eight volunteer blood donors at the Universiti Putra Malaysia (UPM), who had passed the CuSo4 screening method, were recruited for this study. Their bloods specimens were examined with a complete blood count. Subjects with a low mean corpuscular hemoglobin (MCH) level were examined further by checking a serum ferritin level, Hb quantification, and molecular analysis to examine for common RBC disorders. Fourteen point six percent of subjects had a low Hb level, two (1.3%) had IDA and four (2.5%) had thalassemia or some other hemoglobinopathy. Using a MCH level < 27 pg as a cut-off point, 58 subjects (36.7%) had suspected IDA, thalassemia or some other hemoglobinopathy. Eight point nine percent of subjects with a normal Hb level had thalassemia, and 3.8% had IDA. Malaysia has a high prevalence of thalassemia and other hemoglobinopathies. Pre-donation accurate screening is crucial to protect the quality of blood transfusion products. Public education regarding RBC disorders especially among blood donors is important.
    Matched MeSH terms: Anemia, Iron-Deficiency/blood; Anemia, Iron-Deficiency/etiology; Anemia, Iron-Deficiency/epidemiology*
  16. Khoo, Hock-Eng, Azrina Azlan, Mohd Aizat Idris, Amin Ismail, Muhammad Rizal Razman
    MyJurnal
    The present study was carried out to determine the concentrations of selected metal elements (lead, copper, manganese, zinc and iron) in 51 samples of commercial drinking water and tap water available in Malaysia. The results indicated that low metal elements were found in the studied water samples. Lead, manganese, zinc and iron were not detected in some of the studied samples, except copper. The concentrations of the metal elements in the studied samples were well below the maximum permitted concentrations as recommended. Therefore these drinking water are safe for consumption and do not pose adverse effect to the health of consumers due to metal toxicity.
    Matched MeSH terms: Iron
  17. Malays J Nutr, 1995;1(1):-.
    MyJurnal
    Food consumption of 50 female students in Universiti Kebangsaan Malaysia was recorded for 7 days. Foods and drinks most frequently consumed were selected for analysis of iron, zinc, copper and lead content. The mean daily intakes of energy, protein, carbohydrate and fat among the students are 6.5±1.4 MJ (1550±335 kcal), 59.8±18.5g. 227. 1±54.6 g and 46.0±11.5 g respectively. This diet contributed 19.6±6.4 mg Fe, 7.0±2.0 mg Zn and 1.6±0.6 mg Cu per day which were lower than the Malaysian RDA for Fe and US RDA for Zn, while Cu is within the recommended range. The main sources of these minerals in the student’s diet were rice, rice products, meat and animal products. Lead concentration in the diet (134±77 ug/day) is below the acceptable daily intake (ADI) value suggested by Codex Alimentarius Commission (1984). This study indicated concern regarding the low intake of the essential trace elements on long term basis among the students.
    Matched MeSH terms: Iron
  18. Mohammed, Thamer Ahmed, Abdul Halim Ghazali
    MyJurnal
    In Malaysia, the use of groundwater can help to meet the increasing water demand. The utilization of the aquifers is currently contributing in water supplies, particularly for the northern states. In this study, quantitative and qualitative assessments were carried out for the groundwater exploitation in the states of Kelantan, Melaka, Terengganu and Perak. The relevant data was acquired from the Department of Mineral and Geoscience, Malaysia. The quantitative assessment mainly included the determination of the use to yield ratio (UTY). The formula was proposed to determine the UTY ratio for aquifers in Malaysia. The proposed formula was applied to determine the maximum UTY ratios for the aquifers located in the states of Kelantan, Melaka, and Terengganu, and were found to be 4.2, 5.2 and 0.6, respectively. This indicated that exploitation of groundwater was beyond the safe limit in the states of Kelantan and Melaka. The qualitative assessment showed that the groundwater is slightly acidic. In addition, the concentrations of iron and manganese were found to be higher than the allowable limits, but the chloride concentration was found within the allowable limit.
    Matched MeSH terms: Iron
  19. Chan KG
    Int J Mol Sci, 2009 Jan;10(1):345-53.
    PMID: 19333449
    Mycobacterium neoaurum is a soil saprophyte and obligate aerobic bacterium. This group of mycobacterium is relatively fast-growing. They form colonies on nutrient agar at 37 masculineC within 3 - 4 days. In natural soil habitats, bioavailability of iron is limited. To facilitate iron uptake, most mycobacteria produce siderophores. One example is exochelin, which is extracellular and water-soluble. In this report, the production of exochelin in M. neoaurum was induced in iron-deficiency, but repressed under ironsufficiency growth conditions. It is however not induced under zinc-deficiency growth conditions. The growth of this mycobacterium was correlated with exochelin secretion under iron-deficiency culture conditions. When M. neoaurum was grown in defined medium containing 0.04 microg Fe(III)/mL (final concentration), the production of exochelin reached a maximum and the corresponding cell growth was comparable to that under iron-sufficiency conditions. In this study, exochelin was purified from spent supernatant of M. neoaurum by semi-preparative chromatography. When saturated ferric chloride solution was added into the purified exochelin, a ferri-exochelin complex was formed. It is proposed that iron uptake in M. neoaurum is exochelin-mediated.
    Matched MeSH terms: Iron/deficiency; Iron Chelating Agents/isolation & purification*; Iron Chelating Agents/metabolism
  20. Rahmani O, Highfield J, Junin R, Tyrer M, Pour AB
    Molecules, 2016 Mar 16;21(3):353.
    PMID: 26999082 DOI: 10.3390/molecules21030353
    In this work, the potential of CO₂ mineral carbonation of brucite (Mg(OH)2) derived from the Mount Tawai peridotite (forsterite based (Mg)₂SiO4) to produce thermodynamically stable magnesium carbonate (MgCO3) was evaluated. The effect of three main factors (reaction temperature, particle size, and water vapor) were investigated in a sequence of experiments consisting of aqueous acid leaching, evaporation to dryness of the slurry mass, and then gas-solid carbonation under pressurized CO2. The maximum amount of Mg converted to MgCO₃ is ~99%, which occurred at temperatures between 150 and 175 °C. It was also found that the reduction of particle size range from >200 to <75 µm enhanced the leaching rate significantly. In addition, the results showed the essential role of water vapor in promoting effective carbonation. By increasing water vapor concentration from 5 to 10 vol %, the mineral carbonation rate increased by 30%. This work has also numerically modeled the process by which CO₂ gas may be sequestered, by reaction with forsterite in the presence of moisture. In both experimental analysis and geochemical modeling, the results showed that the reaction is favored and of high yield; going almost to completion (within about one year) with the bulk of the carbon partitioning into magnesite and that very little remains in solution.
    Matched MeSH terms: Iron Compounds/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links