Displaying publications 21 - 40 of 921 in total

Abstract:
Sort:
  1. Jesudason, C.G.
    ASM Science Journal, 2007;1(1):7-18.
    MyJurnal
    Molecular dynamics reaction simulation showed that the rate constant is not constant over the concentration profile of reactants and products over a fixed temperature regime, and this variation is expressed in terms of the defined reactivity coefficients. The ratio of these coefficients for the forward and backward reactions were found to equal that of the activity coefficient ratio for the product and reactant species. A theory was developed to explain kinetics in general based on these observations. Several other theorems had first to be developed, most striking of all was the inference that the excess Helmholtz free energy was the thermodynamical function which had a direct relation to these activity factors than the Gibbs free energy. The theory is applied to a class of ionic reactions which could not be rationalized using the standard Bjørn-Bjerrum theory of ionic reactions.
    Matched MeSH terms: Kinetics
  2. Syafiuddin A, Salmiati S, Jonbi J, Fulazzaky MA
    J Environ Manage, 2018 Jul 15;218:59-70.
    PMID: 29665487 DOI: 10.1016/j.jenvman.2018.03.066
    It is the first time to do investigation the reliability and validity of thirty kinetic and isotherm models for describing the behaviors of adsorption of silver nanoparticles (AgNPs) onto different adsorbents. The purpose of this study is therefore to assess the most reliable models for the adsorption of AgNPs onto feasibility of an adsorbent. The fifteen kinetic models and fifteen isotherm models were used to test secondary data of AgNPs adsorption collected from the various data sources. The rankings of arithmetic mean were estimated based on the six statistical analysis methods of using a dedicated software of the MATLAB Optimization Toolbox with a least square curve fitting function. The use of fractal-like mixed 1, 2-order model for describing the adsorption kinetics and that of Fritz-Schlunder and Baudu models for describing the adsorption isotherms can be recommended as the most reliable models for AgNPs adsorption onto the natural and synthetic adsorbent materials. The application of thirty models have been identified for the adsorption of AgNPs to clarify the usefulness of both groups of the kinetic and isotherm equations in the rank order of the levels of accuracy, and this significantly contributes to understandability and usability of the proper models and makes to knowledge beyond the existing literatures.
    Matched MeSH terms: Kinetics
  3. Loy ACM, Gan DKW, Yusup S, Chin BLF, Lam MK, Shahbaz M, et al.
    Bioresour Technol, 2018 Aug;261:213-222.
    PMID: 29665455 DOI: 10.1016/j.biortech.2018.04.020
    The thermal degradation behaviour and kinetic parameter of non-catalytic and catalytic pyrolysis of rice husk (RH) using rice hull ash (RHA) as catalyst were investigated using thermogravimetric analysis at four different heating rates of 10, 20, 50 and 100 K/min. Four different iso conversional kinetic models such as Kissinger, Friedman, Kissinger-Akahira-Sunose (KAS) and Ozawa-Flynn-Wall (OFW) were applied in this study to calculate the activation energy (EA) and pre-exponential value (A) of the system. The EA of non-catalytic and catalytic pyrolysis was found to be in the range of 152-190 kJ/mol and 146-153 kJ/mol, respectively. The results showed that the catalytic pyrolysis of RH had resulted in a lower EA as compared to non-catalytic pyrolysis of RH and other biomass in literature. Furthermore, the high Gibb's free energy obtained in RH implied that it has the potential to serve as a source of bioenergy production.
    Matched MeSH terms: Kinetics
  4. Moss B, Lim KK, Beltram A, Moniz S, Tang J, Fornasiero P, et al.
    Sci Rep, 2017 06 07;7(1):2938.
    PMID: 28592816 DOI: 10.1038/s41598-017-03065-5
    In this article we present the first comparative study of the transient decay dynamics of photo-generated charges for the three polymorphs of TiO2. To our knowledge, this is the first such study of the brookite phase of TiO2 over timescales relevant to the kinetics of water splitting. We find that the behavior of brookite, both in the dynamics of relaxation of photo-generated charges and in energetic distribution, is similar to the anatase phase of TiO2. Moreover, links between the rate of recombination of charge carriers, their energetic distribution and the mode of transport are made in light of our findings and used to account for the differences in water splitting efficiency observed across the three polymorphs.
    Matched MeSH terms: Kinetics
  5. Fulazzaky MA, Nuid M, Aris A, Muda K
    Environ Technol, 2018 Sep;39(17):2151-2161.
    PMID: 28675960 DOI: 10.1080/09593330.2017.1351494
    Understanding of mass transfer kinetics is important for biosorption of nitrogen compounds from palm oil mill effluent (POME) to gain a mechanistic insight into future biological processes for the treatment of high organic loading wastewater. In this study, the rates of global and sequential mass transfer were determined using the modified mass transfer factor equations for the experiments to remove nitrogen by aerobic granular sludge accumulation in a sequencing batch reactor (SBR). The maximum efficiencies as high as 97% for the experiment run at [kLa]g value of 1421.8 h-1 and 96% for the experiment run at [kLa]g value of 9.6 × 1037 h-1 were verified before and after the addition of Serratia marcescens SA30, respectively. The resistance of mass transfer could be dependent on external mass transfer that controls the transport of nitrogen molecule along the experimental period of 256 days. The increase in [kLa]g value leading to increased performance of the SBR was verified to contribute to the future applications of the SBR because this phenomenon provides new insight into the dynamic response of biological processes to treat POME.
    Matched MeSH terms: Kinetics
  6. Zal U'yun Wan Mahmood, Norfaizal Mohamad, Nur Nazirah Johari
    MyJurnal
    Accumulation kinetic trends of cesium and cadmium in the Penaeus monodon were studied using Cs-134 and Cd-109 as a tracer. The objective of this study was to quantify the uptake and loss/depuration kinetic of these two radionuclides in the Penaeus monodon. Uptake and loss/depuration kinetic of these two radionuclides in the Penaeus monodon were varied widely, displayed a simple double kinetic model of linear and exponential trend with time unless modified by moulting at the stage in the mount cycle. Therefore, the variation of Cs-134 and Cd-109 bio-concentration factor could be concluded considerably influence by moulting cycle, environmental and biological condition as well as physico-chemical that direct effects on their uptake and loss/depuration kinetic.
    Matched MeSH terms: Kinetics
  7. Micky Vincent, Latifah Suali, Afizul Safwan Azahari, Patricia Rowena Mark Baran, Elexson Nillian, Lesley Maurice Bilung
    MyJurnal
    Yeast growth and biomass production are greatly influenced by the length of the
    incubation period during cultivation. Therefore, this study was conducted to
    investigate the growth kinetics of five Lipomyces starkeyi strains as determined by
    biomass production. The five L. starkeyi strains, namely L. starkeyi ATCC 12659, L.
    starkeyi MV-1, L. starkeyi MV-4, L. starkeyi MV-5 and L. starkeyi MV-8, were inoculated
    in sterilized Yeast Malt broth, and, incubated for 192 hr at ambient temperature.
    Biomass yields were assessed and calculated gravimetrically every 24 hr. Results
    indicated that the optimal biomass production of L. starkeyi ATCC 12659, L. starkeyi
    MV-1, L. starkeyi MV-4, L. starkeyi MV-5 and L. starkeyi MV-8 were at 120, 168, 144,
    168 and 120 hr, with the concentrations of 6.64, 6.43, 9.78, 11.23 and 8.56 g/L,
    respectively. These results indicate that each L. starkeyi strain requires specific
    incubation period for the optimum production of fungal biomass. Therefore, by
    cultivating each L. starkeyi strain at the predetermined incubation period, biomass
    yields could significantly be improved for further downstream applications such as
    single cell protein and lipid production.
    Matched MeSH terms: Kinetics
  8. Kutty SRM, Almahbashi NMY, Nazrin AAM, Malek MA, Noor A, Baloo L, et al.
    Heliyon, 2019 Oct;5(10):e02439.
    PMID: 31667371 DOI: 10.1016/j.heliyon.2019.e02439
    Treated palm oil mill effluents (POME) is of great concern as it still has colour from its dissolved organics which may pollute receiving water bodies. In this study, the removal of colour from treated palm oil mill effluent were investigated through adsorption studies using carbon derived from wastewater sludge (WSC). Sludge from activated sludge plants were dried and processed to produce WSC. In this study, three different bed depths of WSC were used: 5 cm, 10 cm, and 15 cm. For each bed depth, the flowrate was varied at three different values: 100 mL/hr, 50 mL/hr and 25 mL/hr. It was found that at bed depth of 5 cm, the breakthrough curves were occurred at 360 min, 150 min and 15 min for flowrates of 25, 50 and 100 mL/hr respectively. It was observed that at a particular depth the exhaustion time for column reduced as flow rate increases. Kinetic models, Adams-Bohart and Yoon-Nelson were used to analyze the performance of the adsorption. It was found that rate constant for Adams Bohart model decreased with the increase in bed depth. Adsorption capacity obtained from Adams-Bohart model ranged from 2676.19 mg/L up to 8938.78 mg/L. The maximum adsorption capacity increases with smaller bed depth. For Yoon-Nelson model, the rate constant decreases with increase in bed depth. The required time for 50% breakthrough obtained from the models ranged from 17.01 to 104.17 minutes for all three bed depths. The reduction of colour was found to be effective at all bed depths. The experimental data was best described by both models as with higher values of correlation coefficient (R2).
    Matched MeSH terms: Kinetics
  9. Naqvi SR, Hameed Z, Tariq R, Taqvi SA, Ali I, Niazi MBK, et al.
    Waste Manag, 2019 Feb 15;85:131-140.
    PMID: 30803566 DOI: 10.1016/j.wasman.2018.12.031
    This study investigates the thermal decomposition, thermodynamic and kinetic behavior of rice-husk (R), sewage sludge (S) and their blends during co-pyrolysis using thermogravimetric analysis at a constant heating rate of 20 °C/min. Coats-Redfern integral method is applied to mass loss data by employing seventeen models of five major reaction mechanisms to calculate the kinetics and thermodynamic parameters. Two temperature regions: I (200-400 °C) and II (400-600 °C) are identified and best fitted with different models. Among all models, diffusion models show high activation energy with higher R2(0.99) of rice husk (66.27-82.77 kJ/mol), sewage sludge (52.01-68.01 kJ/mol) and subsequent blends (45.10-65.81 kJ/mol) for region I and for rice husk (7.31-25.84 kJ/mol), sewage sludge (1.85-16.23 kJ/mol) and blends (4.95-16.32 kJ/mol) for region II, respectively. Thermodynamic parameters are calculated using kinetics data to assess the co-pyrolysis process enthalpy, Gibbs-free energy, and change in entropy. Artificial neural network (ANN) models are developed and employed on co-pyrolysis thermal decomposition data to study the reaction mechanism by calculating Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and coefficient of determination (R2). The co-pyrolysis results from a thermal behavior and kinetics perspective are promising and the process is viable to recover organic materials more efficiently.
    Matched MeSH terms: Kinetics
  10. Thevendran R, Navien TN, Meng X, Wen K, Lin Q, Sarah S, et al.
    Anal Biochem, 2020 07 01;600:113742.
    PMID: 32315616 DOI: 10.1016/j.ab.2020.113742
    The performance of aptamers as versatile tools in numerous analytical applications is critically dependent on their high target binding specificity and selectivity. However, only the technical or methodological aspects of measuring aptamer-target binding affinities are focused, ignoring the equally important mathematical components that play pivotal roles in affinity measurements. In this study, we aim to provide a comprehensive review regarding the utilization of different mathematical models and equations, along with a detailed description of the computational steps involved in mathematically deriving the binding affinity of aptamers against their specific target molecules. Mathematical models ranging from one-site binding to multiple aptameric binding site-based models are explained in detail. Models applied in several different approaches of affinity measurements such as thermodynamics and kinetic analysis, including cooperativity and competitive-assay based mathematical models have been elaborately discussed. Mathematical models incorporating factors that could potentially affect affinity measurements are also further scrutinized.
    Matched MeSH terms: Kinetics
  11. Kaewbuddee C, Chanpiwat P, Kidkhunthod P, Wantala K
    Sains Malaysiana, 2016;45:1155-1167.
    The aims of this work were to investigate the characteristics of nanoscale zero valent irons (nZVI) coupled with mesoporous
    materials (RH-MCM-41) adsorbent and to study the removal mechanisms of Pb (II) from synthetical solutions using full
    pictorial design batch experiments. Synthetic nZVI coupled with RH MCM-41 as Pb (II) adsorbent were characterized
    by XRD, TEM, BET and XANES. The results of XANES analyses confirmed the ability of RH-MCM-41 to prevent oxidations of
    Fe0
    to Fe2+ and Fe3+. XANES results also verified the oxidation states of Pb (II). The solution pH was the most significant
    positive effect in controlling Pb (II) adsorption. The equilibrium and kinetic adsorption isotherms well fitted with the
    Langmuir isotherm. The pseudo-second order kinetic adsorption indicated that the adsorption process is the rate limiting
    step for Pb (II) removal. Furthermore, Langmuir-Hinshelwood confirmed the obvious Pb (II) adsorption at the active
    site of adsorbents. The reduction rate constant (kr
    = 5,000 mg/L.min) was higher than the adsorption rate constant (Kad
    = 0.0002 L/mg). Regarding the research results, four pathways including: reduction process, adsorption on FeOOH,
    adsorption on RH-MCM-41 and complex reaction between Fe and Pb ions were suggested for Pb (II) removal by nZVI
    coupled with RH-MCM-41.
    Matched MeSH terms: Kinetics
  12. Tran TV, Nguyen DTC, Nguyen TTT, Nguyen DH, Alhassan M, Jalil AA, et al.
    Sci Total Environ, 2023 Jan 15;856(Pt 1):158817.
    PMID: 36116641 DOI: 10.1016/j.scitotenv.2022.158817
    Each year, nearly 30 million tons of pineapple fruit are harvested for food and drinking industries, along with the release of a huge amount of pineapple wastes. Without the proper treatment, pineapple wastes can cause adverse impacts on the environment, calling for new technologies to convert them into valuable products. Here, we review the production and application of adsorbents derived from pineapple wastes. The thermal processing or chemical modification improved the surface chemistry and porosity of these adsorbents. The specific surface areas of the pineapple wastes-based adsorbents were in range from 4.2 to at 522.9 m2·g-1. Almost adsorption systems followed the pseudo second order kinetic model, and Langmuir isotherm model. The adsorption mechanism was found with the major role of electrostatic attraction, complexation, chelation, and ion exchange. The pineapple wastes based adsorbents could be easily regenerated. We suggest the potential of the pineapple wastes towards circular economy.
    Matched MeSH terms: Kinetics
  13. Goh KB, Li Z, Chen X, Liu Q, Wu T
    J Colloid Interface Sci, 2022 Feb 15;608(Pt 2):1999-2008.
    PMID: 34749148 DOI: 10.1016/j.jcis.2021.10.092
    HYPOTHESIS: The performance of a polymeric core-shell microreactor depends critically on (i) mass transfer, (ii) catalyzed chemical reaction, and (iii) deactivation within the nonuniform core-shell microstructure environment. As such, these three basic working principles control the active catalytic phase density in the reactor.

    THEORY: We present a high-fidelity, image-based nonequilibrium computational model to quantify and visualize the mass transport as well as the deactivation process of a core-shell polymeric microreactor. In stark contrast with other published works, our microstructure-based computer simulation can provide a single-particle visualization with a micrometer spatial accuracy.

    FINDINGS: We show how the interplay of kinetics and thermodynamics controls the product-induced deactivation process. The model predicts and visualizes the non-trivial, spatially resolved active catalyst phase patterns within a core-shell system. Moreover, we also show how the microstructure influences the formation of foulant within a core-shell structure; that is, begins from the core and grows radially onto the shell section. Our results suggest that the deactivation process is highly governed by the porosity/microstructure of the microreactor as well as the affinity of the products towards the solid phase of the reactor.

    Matched MeSH terms: Kinetics
  14. Azwar E, Chan DJC, Kasan NA, Rastegari H, Yang Y, Sonne C, et al.
    J Hazard Mater, 2022 02 15;424(Pt A):127329.
    PMID: 34601414 DOI: 10.1016/j.jhazmat.2021.127329
    Aquatic weeds pose hazards to aquatic ecosystems and particularly the aquatic environment in shellfish aquaculture due to its excessive growth covering entire freshwater bodies, leading to environmental pollution particularly eutrophication intensification, water quality depletion and aquatic organism fatality. In this study, pyrolysis of six aquatic weed types (wild and cultured species of Salvinia sp., Lemna sp. and Spirodella sp.) were investigated to evaluate its potential to reduce and convert the weeds into value-added chemicals. The aquatic weeds demonstrated high fixed carbon (8.7-47.3 wt%), volatile matter content (39.0-76.9 wt%), H/C ratio (1.5-2.0) and higher heating value (6.6-18.8 MJ/kg), representing desirable physicochemical properties for conversion into biofuels. Kinetic analysis via Coats-Redfern integral method obtained different orders for chemical reaction mechanisms (n = 1, 1.5, 2, 3), activation energy (55.94-209.41 kJ/mol) and pre-exponential factor (4.08 × 104-4.20 × 1017 s-1) at different reaction zones (zone 1: 150-268 °C, zone 2: 268-409 °C, zone 3: 409-600 °C). The results provide useful information for design and optimization of the pyrolysis reactor and establishment of the process condition to dispose this environmentally harmful species.
    Matched MeSH terms: Kinetics
  15. Choong TSY, Yeoh CM, Phuah ET, Siew WL, Lee YY, Tang TK, et al.
    PLoS One, 2018;13(2):e0192375.
    PMID: 29401481 DOI: 10.1371/journal.pone.0192375
    Diacylglycerol (DAG) and monoacylglycerol (MAG) are two natural occurring minor components found in most edible fats and oils. These compounds have gained increasing market demand owing to their unique physicochemical properties. Enzymatic glycerolysis in solvent-free system might be a promising approach in producing DAG and MAG-enriched oil. Understanding on glycerolysis mechanism is therefore of great importance for process simulation and optimization. In this study, a commercial immobilized lipase (Lipozyme TL IM) was used to catalyze the glycerolysis reaction. The kinetics of enzymatic glycerolysis reaction between triacylglycerol (TAG) and glycerol (G) were modeled using rate equation with unsteady-state assumption. Ternary complex, ping-pong bi-bi and complex ping-pong bi-bi models were proposed and compared in this study. The reaction rate constants were determined using non-linear regression and sum of square errors (SSE) were minimized. Present work revealed satisfactory agreement between experimental data and the result generated by complex ping-pong bi-bi model as compared to other models. The proposed kinetic model would facilitate understanding on enzymatic glycerolysis for DAG and MAG production and design optimization of a pilot-scale reactor.
    Matched MeSH terms: Kinetics
  16. Yiin CL, Yusup S, Quitain AT, Uemura Y, Sasaki M, Kida T
    Bioresour Technol, 2018 May;255:189-197.
    PMID: 29414166 DOI: 10.1016/j.biortech.2018.01.132
    The impacts of low-transition-temperature mixtures (LTTMs) pretreatment on thermal decomposition and kinetics of empty fruit bunch (EFB) were investigated by thermogravimetric analysis. EFB was pretreated with the LTTMs under different duration of pretreatment which enabled various degrees of alteration to their structure. The TG-DTG curves showed that LTTMs pretreatment on EFB shifted the temperature and rate of decomposition to higher values. The EFB pretreated with sucrose and choline chloride-based LTTMs had attained the highest mass loss of volatile matter (78.69% and 75.71%) after 18 h of pretreatment. For monosodium glutamate-based LTTMs, the 24 h pretreated EFB had achieved the maximum mass loss (76.1%). Based on the Coats-Redfern integral method, the LTTMs pretreatment led to an increase in activation energy of the thermal decomposition of EFB from 80.00 to 82.82-94.80 kJ/mol. The activation energy was mainly affected by the demineralization and alteration in cellulose crystallinity after LTTMs pretreatment.
    Matched MeSH terms: Kinetics
  17. Abunowara M, Bustam MA, Sufian S, Babar M, Eldemerdash U, Mukhtar A, et al.
    Environ Res, 2023 Feb 01;218:114905.
    PMID: 36442522 DOI: 10.1016/j.envres.2022.114905
    CO2 sequestration into coalbed seams is one of the practical routes for mitigating CO2 emissions. The adsorption mechanisms of CO2 onto Malaysian coals, however, are not yet investigated. In this research CO2 adsorption isotherms were first performed on dry and wet Mukah-Balingian coal samples at temperatures ranging from 300 to 348 K and pressures up to 6 MPa using volumetric technique. The dry S1 coal showed the highest CO2 adsorption capacity of 1.3 mmol g-1, at 300 K and 6 MPa among the other coal samples. The experimental results of CO2 adsorption were investigated using adsorption isotherms, thermodynamics, and kinetic models. Nonlinear analysis has been employed to investigate the data of CO2 adsorption onto coal samples via three parameter isotherm equilibrium models, namely Redlich Peterson, Koble Corrigan, Toth, Sips, and Hill, and four parameter equilibrium model, namely Jensen Seaton. The results of adsorption isotherm suggested that the Jensen Seaton model described the experimental data well. Gibb's free energy change values are negative, suggesting that CO2 adsorption onto the coal occurred randomly. Enthalpy change values in the negative range established that CO2 adsorption onto coal is an exothermic mechanism. Webber's pore-diffusion model, in particular, demonstrated that pore-diffusion was the main controlling stage in CO2 adsorption onto coal matrix. The activation energy of the coals was calculated to be below -13 kJ mol-1, indicating that adsorption of CO2 onto coals occurred through physisorption. The results demonstrate that CO2 adsorption onto coal matrix is favorable, spontaneous, and the adsorbed CO2 molecules accumulate more onto coal matrix. The observations of this investigation have significant implications for a more accurate measurement of CO2 injection into Malaysian coalbed seams.
    Matched MeSH terms: Kinetics
  18. Rashidi NA, Bokhari A, Yusup S
    Environ Sci Pollut Res Int, 2021 Jul;28(26):33967-33979.
    PMID: 32333352 DOI: 10.1007/s11356-020-08823-z
    The volumetric adsorption kinetics of carbon dioxide (CO2) onto the synthesized palm kernel shell activated carbon via single-stage CO2 activation and commercial Norit® activated carbon were carried out at an initial pressure of approximately 1 bar at three different temperatures of 25, 50, and 100 °C. The experimental kinetics data were modelled by using the Lagergren's pseudo-first-order model and pseudo-second-order model. Comparing these two, the non-linear pseudo-second-order kinetics model presented a better fit towards CO2 adsorption for both adsorbents, owing to its closer coefficient of determination (R2) to unity, irrespective of the adsorption temperature. In addition, kinetics analysis showed that the corresponding kinetics coefficient (rate of adsorption) of both activated carbons increased with respect to adsorption temperature, and thereby, it indicated higher mobility of CO2 adsorbates at an elevated temperature. Nevertheless, CO2 adsorption capacity of both activated carbons reduced at elevated temperatures, which signified exothermic and physical adsorption (physisorption) behaviour. Besides, process exothermicity of both carbonaceous adsorbents can be corroborated through activation energy (Ea) value, which was deduced from the Arrhenius plot. Ea values that were in range of 32-38 kJ/mol validated exothermic adsorption at low pressure and temperature range of 25-100 °C. To gain an insight into the CO2 adsorption process, experimental data were fitted to intra-particle diffusion model and Boyd's diffusion model, and findings revealed an involvement of both film diffusion and intra-particle diffusion during CO2 adsorption process onto the synthesized activated carbon and commercial activated carbon.
    Matched MeSH terms: Kinetics
  19. Arifin SNH, Radin Mohamed RMS, Al-Gheethi A, Lai CW, Gopalakrishnan Y, Hairuddin ND, et al.
    Environ Sci Pollut Res Int, 2023 Feb;30(10):25103-25118.
    PMID: 34617227 DOI: 10.1007/s11356-021-16732-y
    The current work aimed to investigate the degradation of the triclocarban (TCC) in aqueous solution using a modified zeolite/TiO2 composite (MZTC) synthesized by applying the electrochemical anodization (ECA). The synthesis process was conducted at different voltages (10, 40, and 60) V in 1 h and using electrophoresis deposition (EPD) in doping zeolite. The MZTC was covered with the array ordered, smooth and optimum elongated nanotubes with 5.1 μm of the length, 120.3 nm of the inner diameter 14.5 nm of the wall thickness with pure titanium and crystalline titania as determined by FESEM/EDS, and XRD. The kinetic study by following Langmuir-Hinshelwood(L-H) model and pseudo first order, the significant constant rate was obtained at pH 11 which was 0.079 ppm/min, 0.75 cm2 of MZTC catalyst loading size achieved 0.076 ppm/min and 5 ppm of TCC initial concentration reached 0.162 ppm/min. The high-performance liquid chromatography (HPLC) analysis for mechanism study of TCC photocatalytic degradation revealed eleven intermediate products after the whole process of photocatalysis. In regard of toxicology assessment by the bacteria which is Photobacterium phosphoreum, the obtained concentration of TCC at minute 60 was less satisfied with remained 0.36 ppm of TCC was detected indicates that the concentration was above allowable level. Where the allowable level of TCC in stream is 0.1 ppm.
    Matched MeSH terms: Kinetics
  20. Issa MA, Zentou H, Jabbar ZH, Abidin ZZ, Harun H, Halim NAA, et al.
    Environ Sci Pollut Res Int, 2022 Dec;29(57):86859-86872.
    PMID: 35802332 DOI: 10.1007/s11356-022-21844-0
    In this study, luminescent bio-adsorbent nitrogen-doped carbon dots (N-CDs) was produced and applied for the removal and detection of Hg (II) from aqueous media. N-CDs were synthesized from oil palm empty fruit bunch carboxymethylcellulose (CMC) and urea. According to several analytical techniques used, the obtained N-CDs display graphitic core with an average size of 4.2 nm, are enriched with active sites, stable over a wide range of pH and have great resistance to photobleaching. The N-CDs have bright blue emission with an improved quantum yield (QY) of up to 35.5%. The effect of the variables including pH, adsorbent mass, initial concentration and incubation time on the removal of Hg (II) was investigated using central composite design. The statistical results confirmed that the adsorption process could reach equilibrium within 30 min. The reduced cubic model (R2 = 0.9989) revealed a good correlation between the observed values and predicted data. The optimal variables were pH of 7, dose of 0.1 g, initial concentration of 100 mg/L and duration of 30 min. Under these conditions, adsorption efficiency of 84.6% was obtained. The adsorption kinetic data could be well expressed by pseudo-second-order kinetic and Langmuir isotherm models. The optimal adsorption capacity was 116.3 mg g-1. Furthermore, the adsorbent has a good selectivity towards Hg (II) with a detection limit of 0.01 μM due to the special interaction between Hg (II) and carboxyl/amino groups on the edge of N-CDs. This work provided an alternative direction for constructing low-cost adsorbents with effective sorption and sensing of Hg (II).
    Matched MeSH terms: Kinetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links